The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
Titanite(CaTi2SiO5) is an important accessory mineral not only in magmatic and metamorphic rocks,but also commonly in hydrothermal mineral deposits. It incorporates appreciable amounts(usually 10×10-6 s to 100...Titanite(CaTi2SiO5) is an important accessory mineral not only in magmatic and metamorphic rocks,but also commonly in hydrothermal mineral deposits. It incorporates appreciable amounts(usually 10×10-6 s to 100×10-6 s) of U and Th into its structure and has a closure temperature of Pb diffusion higher than 660~700 ℃(Scott and St-Onge,1995) ,making it an ideal U-Th-Pb geochronometer. The Daye metallogenic district is located in the west of the giant Middle-Lower Yangtze River(MLYR) Cu-Fe-Au province,eastern China and is well endowed with Fe,Cu,and polymetallic skarn deposits.展开更多
The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt.The garnet is the main altered mineral in the Mengya’a area.The color of the garnet varies f...The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt.The garnet is the main altered mineral in the Mengya’a area.The color of the garnet varies from chartreuse to dark yellow brown and to russet.The brown garnet(Grt1)is related to pyrrhotite and chalcopyrite,and the green garnet(Grt2)is associated with lead–zinc mineralization.LA-ICP-MS is the induced coupled plasma mass spectrometry.This paper has used this technique to investigate Grt1 and Grt2.Grt1 develops core–rim textures with strong oscillation zone occurring in rim,whereas Grt2lacks core–rim textures and featured by oscillation zone.LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO(29.90–37.52%)and FeO(21.17–33.35%),but low in Al_(2)O_(3)(0.05–4.85%).The calculated end members belong to grandite(grossular–andradite)garnets andradite.The negative Al(IV)versus Fe^(3+),positive Al(IV)versus total Al stoichiometric number,the positive Al(IV)versus Fe^(3+),and the negative Al(IV)versus total REE,all indicate that the substitution of REEs in garnets is controlled by YAG.All Garnets are depleted in large lithophile elements(e.g.,Rb=0.00–4.01 ppm,Sr=0.03–8.56 ppm).The total REE in Grt1 core is high(ΣREE=233–625 ppm),with HREE enriched pattern(LREE/HREE=0.33–1.69)and weak negative Eu anomalies(δEu=0.21–0.47).In contrast,the total REEs in the Grt1 rim and Grt2 are low(ΣREE=12.4–354 ppm;ΣREE=21.0–65.3 ppm),with LREE enriched pattern(LREE/HREE=0.54–34.4;LREE/HREE=11.4–682)and positive Eu anomalies(δEu=0.35–27.2;δEu=1.02–30.7).After data compilation of garnet chemicals,we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system.It was close-to-neutral,with a low water–rock ratio.The core of garnet was formed by fluid diffusion in metasomatic processes.The fluid was changed into a relatively open system with reduced,chloride-rich,and weakacid fluid.It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.展开更多
On the basis of geological studies of skarn deposits in China and by using thermodynamic models of thesolid solution, the coexisting clinopyroxene-garnet pair in skarn deposits has been analysed and a coexistingclinop...On the basis of geological studies of skarn deposits in China and by using thermodynamic models of thesolid solution, the coexisting clinopyroxene-garnet pair in skarn deposits has been analysed and a coexistingclinopyroxene-garnet acidometer developed. They can be used to estimate the medium condition under whichthe skarn was formed. The research on the acidity for the formation of various metallic skarn deposits in Chinasuggests that skarns endowed with dissimilar types of mineralization and occurring in diverse environments dif-fer in the acidity conditions for their formation and in the trend of acidity variation of ore-bearing fluid. This,coupled with the study of oxygen fugacity of coexisting minerals, makes it possible to establish the oxygenfugacity-acidity facies of skarn deposits, which reflect the close genetic relationship between the metallizationand the formation of skarn.展开更多
Hydrothermal activity from a hydrothermal circulatory system is a special geological event, it is of importance to the formation of some massive sulfide deposits (hydrothermal deposits). The Authors think that Jiama p...Hydrothermal activity from a hydrothermal circulatory system is a special geological event, it is of importance to the formation of some massive sulfide deposits (hydrothermal deposits). The Authors think that Jiama polymetallic ore deposit in Gangdise tectonic zone, Tibet is a special skarn deposit i.e. a “hydrothermal\|metasomatic skarn deposit" bound up with benthonic hydrothermal circulatory system. Its important characteristics are as follows: 1 Evolution of the Gangdise island arc in studied area may be divided into three stages Middle Jurassic volcanic arc stage; Middle—Late Jurassic and Early Cretaceous inter arc sedimentary basin stage; and Eogene magmatic arc stage. The deposit is confined to the inter arc sedimentary basin. Existing data indicate that the volcanic arc provided Jiama deposit with abundant ore\|forming material; the inter arc sedimentary basin provided Jiama deposit with absolutely necessary space; the magmatic arc created reconcentration condition for the Jiama deposit.展开更多
The authors discussed the metallogenic conditions of goldbearing skarn deposits along the middlelower Yangtze River reaches. Gold was enriched in mantleoriginated magmas while copper was enriched in crustoriginated ma...The authors discussed the metallogenic conditions of goldbearing skarn deposits along the middlelower Yangtze River reaches. Gold was enriched in mantleoriginated magmas while copper was enriched in crustoriginated magmas. So the enrichment of gold in skarn deposits was decided by the M/C ratios of the intrusive rocks. The distribution of these deposits was controlled not only by the localization of the intrusive rocks which were decided by Mesozoic Eradeveloped largescaled and deepseated faults, but also by the favorable stratigraphic horizons.展开更多
For the first time, fluid-melt inclusions are found in fluorite of the Huanggangliang skarn iron-tin deposit (HSID). The fluorite was formed in the main stage of mineralization, named the hydro-skarnization stage. The...For the first time, fluid-melt inclusions are found in fluorite of the Huanggangliang skarn iron-tin deposit (HSID). The fluorite was formed in the main stage of mineralization, named the hydro-skarnization stage. The inclusions contain various components such as Fe, Mg and Cr from deep sources. The melts of primary inclusions are mainly Ca- and F-rich and those of secondary inclusions tend to become Si-rich. During this evolution process, the melts and iron daughter minerals decreased and even vanished. These facts reveal that the evolution of the primary mineralizing fluids and the differentiation of the fluids and melts are the main factors leading to the deposition of Fe, Sn and other elements. This discovery confirms the magmatic genesis of the HSID and has filled in the gaps in the research of magmatogenic skarn deposits and furnished new methods for such research. Furthermore, it has enlarged the scope of the research on fluid inclusions.展开更多
Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes.However,there are a number of mineralogical and anal...Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes.However,there are a number of mineralogical and analytical limitations to the approaches developed for the absolute dating of mineralizing systems,such as molybdenite Re-Os and zircon and garnet U-Pb,among others.This means that the precise and accurate dating of mineralizing systems that may not contain minerals suitable for dating using existing approaches requires the development of new(and ideally in situ)approaches to absolute dating.This study outlines a new in situ analytical approach that has the potential to rapidly and accurately evaluate the timing of ore formation.Our study employs a novel application of in situ scheelite U-Pb dating analysis using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)and samples from the Qiaomaishan deposit,a representative example of skarn mineralization within the Xuancheng ore district of eastern China.Our approach to scheelite dating of the deposit is verified by cross-comparison to dating of cogenetic garnet and apatite,proving the effectiveness of this approach.Our new approach to dating of scheelite-bearing geological systems is rapid,cheap,requires little sample preparation,and is undertaken in situ,allowing crucial geological and mineralogical context to be retained during analysis.The approaches outlined here not only allow the determination of the absolute timing of formation of the Qiaomaishan deposit through the U-Pb dating of scheelite[138.6±3.2 Ma,N=39,mean square weighted deviation(MSWD)=1.17],garnet(138.4±1.0 Ma,N=40,MSWD=1.3),and apatite(139.6+3.3 Ma,N=35,MSWD=0.72),but also further supports the theoretical genetic links between this mineralization and the emplacement of a proximal porphyritic granodiorite intrusion(zircon U-Pb age:139.5±1.2 Ma,N=23,MSWD=0.3).Moreover,our research indicates that the higher the concentrations of U within scheelite,the more suitable that scheelite is for U-Pb dating,with the main factor controlling the U content of scheelite seemingly being variations in oxygen fugacity conditions.This novel approach provides a potentially powerful tool,not just for the dating of skarn systems but also with potential applications in orogenic and intrusion-related gold,porphyry W-Mo,and greisen mineralizing systems as well as other scheelite-bearing geological bodies or geological systems.展开更多
The small-scale Balugou Cu-Pb-Zn skarn deposit(45 298 tonnages of ore at 0.1% to 3.99% Cu, 0.20% to 0.43% Pb and 0.76% to 10.92% Zn) is located in the Wulonggou area in the eastern Kunlun orogen, NW China. Ore depos...The small-scale Balugou Cu-Pb-Zn skarn deposit(45 298 tonnages of ore at 0.1% to 3.99% Cu, 0.20% to 0.43% Pb and 0.76% to 10.92% Zn) is located in the Wulonggou area in the eastern Kunlun orogen, NW China. Ore deposition is spatially and temporally related with the pre-collisional Anisian Balugou granites(~244 Ma). The mineralization hosted by the contact between marble beds within the Paleo-Proterozoic Jinshuikou Group and Balugou granites, was structurally and lithologically controlled. The mineralogy of the Balugou deposit includes an early simple skarn mineral gangue(epidote with little diopside) and a late complicated quartz sulfide assemblage(pyrite, pyrrhotite, chalcopyrite, sphalerite, galena, bornite, quartz, carbonate and chlorite). The δ34S values of eighteen sulfides range from-2.1‰ to +2.8 ‰, with an average of +0.07‰, and the calculated δ34SH2S values for H2 S in hydrothermal fluids range from-3.2‰ to +2.4‰, with an average of +0.03‰, suggesting a relatively homogeneous magmatic(±mantle) source, with sulfur produced directly by the Balugou granites. The sixteen sulfides have 206Pb/204 Pb ratios from 18.367 4 to 18.384 1, 207Pb/204 Pb ratios from 15.634 6 to 15.641 5, and 208Pb/204 Pb ratios from 38.455 5 to 38.485 0, which are close to those of K-feldspars from the Balugou granites, but are far away from age-corrected lead isotopic ratios of six wall-rock samples. So it was considered that the Pb sources of sulfides must be almost derived from the Balugou granites rather than the older wall-rocks. Collectively, it's suggested that the Balugou Cu-Pb-Zn deposit belongs to skarn deposit, and the sulfur and lead deposited in it were leached from the Anisian Balugou granites.展开更多
The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trac...The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trace the skarn evolution.Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage(Stage I)combined with thermodynamic modeling suggests that the alteration may have occurred at 400470°C under moderately high fO withΔlgfO(HM)ranges from 4 to 4.2.The model is based on a maximum 22 pressure of 50 MPa calculated from magmatic amphibole geobarometer.The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage(Stage II).The reactions occurred at 400440°C under moderate fO(ΔlgfO(HM):4 to 4.4).In Stage III,the breakdown of ilvaite to form calcite,pyrite 22 and ferroactinolite depends on XCO which can be estimated to be in a range of 0.005 to 0.05,and the reaction would 2 occur at higher temperatures with increasing XCO.Under these conditions,the breakdown occurs at 270350°C and 2 low fO(ΔlgfO(HM):up to 5.2).The thermodynamic model for continuous evolution from Stage I to Stage III 22 completely records the conditions of the retrograde alteration,which is inconsistent with the thermobarometry imprints of fluid inclusions.Therefore,the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.展开更多
The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age...The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.展开更多
The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling,broadly separated by the Shangdan suture zone.These two orogenic belts were generated by subduction-collisional p...The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling,broadly separated by the Shangdan suture zone.These two orogenic belts were generated by subduction-collisional processes in the Early Paleozoic and Late Triassic,respectively.During the Late Jurassic to Early Cretaceous,the eastern portion of the Qinling Orogen was tectonically reactivated due to westerly subduction of the Izanagi plate underneath the East China continental margin.The Qinling Orogen is well-endowed with numerous Au,Mo,Ag-Pb-Zn deposits that predominantly formed in the Late Triassic to Early Cretaceous,with rare Paleozoic varieties documented.In this study,we present garnet and zircon U-Pb dating results to show that the Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling orogenic belt formed in the Early Silurian and is genetically related to subduction-related magmatism.The Huoshenmiao deposit consists of lenticular and stratiform orebodies that contain massive or densely disseminated magnetite variably associated with garnet,diopside,epidote,hornblende,and actinolite.Garnets from iron ores are andradite and grossular in composition(Ad_(83.1)Gr_(13.3)-Ad_(86.5)Gr_(10.2))and characterized by enrichment in light rare earth elements(ΣLREE=57.85-103.82 ppm)and depletion in heavy rare earth elements(ΣHREE=5.50-11.34 ppm),with significantly positive Eu and Ce anomalies(δEu of 1.09-1.89 andδCe of 1.39-1.69).These compositional signatures are distinctly different from those of garnets in the ore-hosting metamorphic rocks that are typically dominated by almandine,spessartine and grossular(Al_(47.4)Sp_(30.4)Gr_(13.8)-Al_(51.9)Sp_(24.8)Gr_(17.6)),depleted in LREE(0.14-0.69 ppm),enriched in HREE(95.68-841.60 ppm)and have pronounced negative Eu anomalies(δEu=0.24-0.51).In addition,garnets from iron ores of the Huoshenmiao deposit contain abundant daughter mineral-bearing,multiphase fluid inclusions,further confirming their hydrothermal origin.Two samples of those hydrothermal garnets yield U-Pb dates of 437±9 Ma and 437±10 Ma(2σ),revealing a Paleozoic mineralization event that has long been ignored and rarely documented.These garnet dates agree well with zircon U-Pb dates of 438±4 Ma to 436±3 Ma for a gabbroic diorite and 430±4 Ma for a granite intrusion in close proximity of the mine,supporting a possible genetic link between the iron mineralization and Early Silurian magmatism.The Paleozoic intrusions are enriched in large ion lithophile elements(LILEs:Ba,K,Sr)and LREEs,depleted in high field strength elements(HFSEs:Nb,Ta,P,Ti),have whole-rock(^(87)Sr/^(86)Sr)i,ε_(Nd)(t),and zirconεHf(t)values of 0.7039-0.7042,3.32-4.33,and 13.0-14.9,respectively.These geochemical and isotopic characteristics suggest that the Paleozoic intrusions were affiliated with arc magmatism triggered by subduction of the Shangdan oceanic plate in the Early Paleozoic.Recognition of the Silurian Huoshenmiao iron skarn deposit opens a new window for exploration of Paleozoic mineral resources in the Tongbai area and other portions of the North Qinling Orogen.展开更多
The Chengchao iron deposit,the largest high-grade skarn iron deposit in southeastern Hubei Province,contains considerable amounts of magnetite and by-product anhydrite.To obtain better understanding of the ore-formati...The Chengchao iron deposit,the largest high-grade skarn iron deposit in southeastern Hubei Province,contains considerable amounts of magnetite and by-product anhydrite.To obtain better understanding of the ore-formation process,this study carried out He-Ar-S-Pb multi-isotopic analyses on the pyrites formed during two stages of mineralization.The results indicate that the δ34S values(ranging from 14.0‰ to 17.6‰) of pyrites formed from the two stages have no obvious differences,suggesting that they were not derived from a single magmatic sulfur source.The δ34S values of anhydrite mostly range from 21.9‰ to 28.4‰,similar to that of the Middle Triassic sedimentary anhydrite in the Middle-Lower Yangtze River metallogenic belt(MLYRB).The Pb isotopic compositions of the pyrites of both stages are homogeneous,with values of 208Pb/204Pb,207Pb/204Pb,and-206Pb/204Pb being 38.006-38.257,15.523-15.556,and 17.806-18.052,respectively,indicating a mixed crust-mantle source.The He-Ar results exhibit different compositions of the two stages:the -3He/-4He(R/Ra) and 40Ar/-36Ar values for the early-stage pyrite are 0.46-0.63 and 311-322,respectively,whereas the values for late-stage pyrite are 0.23-0.34 and 305-361,respectively.Both stages of pyrites indicate the multiple sources of the ore-forming fluids,with decreasing amount of magmatic water and increasing amount of modified meteoric water(MASW) during fluid evolution.The Triassic evaporites played an important role in the mineralization process.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of T...Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of Tuolangla,a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Lower Cretaceous Bima Formation.It was intruded by granodiorite porphyry intrusions at about 23.1 Ma.Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry.Molybdenite yielded a Re-Os weighted mean age of 23.5±0.3 Ma and is considered to represent the age of skarn mineralization at the deposit.Theδ^34S values of sulfides,concentrated in a range between 0.6‰to 3.4‰,show that the sulfur has a homogeneous source with characteristics of magmatic sulfur.The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust.The granodiorite porphyry displays high SiO2(68.78%–69.75%)and K2O(3.40%–3.56%)contents,and relatively lower Cr(2.4×10^-6–4.09×10^-6),Ni(2.79×10^-6–3.58×10^-6)contents,and positiveεHf(t)values(7.7–12.9)indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust.The Tuolangla deposit is located in the central part of Zedang terrane.This terrane was once considered an ancient terrane.This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north.Thus,the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane.This finding may clarify why the Oligocene(about 23 Ma)deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene(17–14 Ma)mineralization.展开更多
Yangla copper deposit is the largest banded skarn hosted copper deposit found recently in the Tethys orogenic belt of Southwestern China. On the basis of the study of distribution, petrology and mineralogy as well as...Yangla copper deposit is the largest banded skarn hosted copper deposit found recently in the Tethys orogenic belt of Southwestern China. On the basis of the study of distribution, petrology and mineralogy as well as major element, REE and isotope geochemistry, the authors find that the banded skarn, which hosts the deposit, was precipitated from hydrothermal solutions in the form of exhalate sediment. Therefore, the banded skarn hosted copper deposit is a Sedex type deposit, with a series of stacked, conformable lenses underlain by at least one stringer zone. The deposit, intercalated at the contact of lower clastic rock and upper carbonate rock of Gajinxueshan Group, was formed in the Carboniferous ((296.1±7.0) Ma), contemporary to the host Gajinxueshan Group. The interpretation of the genesis of Yangla banded skarn hosted copper deposit is of fundamental exploration significance for the discovery of Sedex type copper deposit in the region.展开更多
REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demo...REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determined by the hydrothermal solutions involved in the infiltration metasomatism. The hydrothermal fluids are characterized by having slightly right-hand dipping REE patterns, being enriched in LREE and having strongly negative Eu anomalies. The uptake of REE from hydrothermal fluids during the growth of garnet crystals resulted in the garnets having similar REE patterns to the hydrothermal fluids. Based on the spatial variation of REE in skarns and the structures of the hosting strata, we can get a better understanding of the transport path and pattern of the fluids involved in the formation of skarns and their related deposits. REE geochemistry investigation can help elucidate the genesis of skarns and skarn-related deposits.展开更多
The Langdu skarn copper deposit in the Zhongdian area, Yunnan Province, China, has an average Cu grade of 6.49 %. The deposit is related to a porphyry intrusion(*216 Ma), which was emplaced in the Upper Triassic sedim...The Langdu skarn copper deposit in the Zhongdian area, Yunnan Province, China, has an average Cu grade of 6.49 %. The deposit is related to a porphyry intrusion(*216 Ma), which was emplaced in the Upper Triassic sedimentary rocks of the Tumugou and Qugasi Formations.At the Langdu skarn copper deposit, carbon and oxygen isotope ratios of fresh limestones(d18O = 3.0–5.6 % relative to V-SMOW; d13 C = 24.5–25.7 % relative to PDB)and partly altered limestones(d18O = 27–7.2 to-1.9 %;d13C = 11.8–15.2 %) indicated that the deposit was a typical marine carbonate source. Oxygen and carbon isotope values for calcites formed at different hydrothermal stages are-9.1 to 0.2 and 10.1–16.3 %, respectively. Moreover,the carbon–oxygen isotopic composition of an ore-forming fluid(d18O = 5.0–9.5 %, d13 C =-7.3 to-5.3 %) suggested the presence of magmatic water, which most likely came from the differentiation or melting of a homologous magma chamber. The deposition of Calcite I may arise from metasomatism in an open system with a progressively decreasing temperature.Later, the minerals chalcopyrite, pyrrhotite, quartz and Calcite II were precipitated due to immiscibility. Water–rock interaction could potentially be responsible for Calcite III precipitation in the post-ore stage.展开更多
Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively un...Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively uncommon mineral, has been dominantly discovered in some Carlin gold deposits, and minor Sb- Hg, U and Pb-Zn-Ag deposits.展开更多
The Baiyinnuo’er deposit in northern China is located in the south section of the Great Xing’an Range,and it is the largest skarn Zn–Pb deposit in the region.Skarn and Zn–Pb orebodies mainly occur between the diff...The Baiyinnuo’er deposit in northern China is located in the south section of the Great Xing’an Range,and it is the largest skarn Zn–Pb deposit in the region.Skarn and Zn–Pb orebodies mainly occur between the different units of the Permian Huanggangliang Formation,or within the contact zone between the intrusive rocks and the marble.Although Baiyinnuo’er has been well investigated previously,the timing of the Zn–Pb mineralization is still controversial,largely due to the lack of appropriate ore or alteration minerals that could be directly used for isotopic dating.In this study,we report the results of Rb–Sr isotopic analysis for sphalerite and pyrite samples from the Baiyinnuo’er orebodies,which yielded two isochron ages of 137.4±3.4 and 140.0±7.8 Ma,respectively,constraining the Zn–Pb mineralization time of the deposit as the Early Cretaceous.The data are also consistent with the age of the granitoids in the mining area,indicating a potential genetic relationship between the Early Cretaceous magmatism and mineralization.Many other intrusion-related hydrothermal deposits(including the two typical skarns,Huanggang and Haobugao)in the southern Great Xing’an Range also share similar mineralization ages(i.e.,140–130 Ma).Together,these data suggest an Early Cretaceous mineralization event in this region,and this largescale mineralization could be related to the regional tectonic regime transition from compression to extension as a result of the rollback of the subducted Paleo-Pacific plate.The initial87 Sr/86 Sr ratios of the sphalerite and pyrite samples are 0.70569 and 0.70616,respectively,implying that the ore-forming material could have a significant contribution from the mantle components.The current study shows that sulfide Rb–Sr dating could be used in deciphering the timing of skarn deposit formation.展开更多
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
基金supported by the NSFC(Grants Nos.90814004 and 40821061)
文摘Titanite(CaTi2SiO5) is an important accessory mineral not only in magmatic and metamorphic rocks,but also commonly in hydrothermal mineral deposits. It incorporates appreciable amounts(usually 10×10-6 s to 100×10-6 s) of U and Th into its structure and has a closure temperature of Pb diffusion higher than 660~700 ℃(Scott and St-Onge,1995) ,making it an ideal U-Th-Pb geochronometer. The Daye metallogenic district is located in the west of the giant Middle-Lower Yangtze River(MLYR) Cu-Fe-Au province,eastern China and is well endowed with Fe,Cu,and polymetallic skarn deposits.
基金funded by the Surface Project of National Natural Science Foundation of China (41372093)。
文摘The Mengya’a Lead–zinc deposit is a large skarn deposit in the north of the eastern segment of Gangdese metallogenic belt.The garnet is the main altered mineral in the Mengya’a area.The color of the garnet varies from chartreuse to dark yellow brown and to russet.The brown garnet(Grt1)is related to pyrrhotite and chalcopyrite,and the green garnet(Grt2)is associated with lead–zinc mineralization.LA-ICP-MS is the induced coupled plasma mass spectrometry.This paper has used this technique to investigate Grt1 and Grt2.Grt1 develops core–rim textures with strong oscillation zone occurring in rim,whereas Grt2lacks core–rim textures and featured by oscillation zone.LA–ICP–MS analysis shows that garnets of Mengya’a are rich in CaO(29.90–37.52%)and FeO(21.17–33.35%),but low in Al_(2)O_(3)(0.05–4.85%).The calculated end members belong to grandite(grossular–andradite)garnets andradite.The negative Al(IV)versus Fe^(3+),positive Al(IV)versus total Al stoichiometric number,the positive Al(IV)versus Fe^(3+),and the negative Al(IV)versus total REE,all indicate that the substitution of REEs in garnets is controlled by YAG.All Garnets are depleted in large lithophile elements(e.g.,Rb=0.00–4.01 ppm,Sr=0.03–8.56 ppm).The total REE in Grt1 core is high(ΣREE=233–625 ppm),with HREE enriched pattern(LREE/HREE=0.33–1.69)and weak negative Eu anomalies(δEu=0.21–0.47).In contrast,the total REEs in the Grt1 rim and Grt2 are low(ΣREE=12.4–354 ppm;ΣREE=21.0–65.3 ppm),with LREE enriched pattern(LREE/HREE=0.54–34.4;LREE/HREE=11.4–682)and positive Eu anomalies(δEu=0.35–27.2;δEu=1.02–30.7).After data compilation of garnet chemicals,we found that the early fluid responsible for the core of Grt1 was a relatively closed and chloride-depleted fluid system.It was close-to-neutral,with a low water–rock ratio.The core of garnet was formed by fluid diffusion in metasomatic processes.The fluid was changed into a relatively open system with reduced,chloride-rich,and weakacid fluid.It was fluid infiltration and metasomatism that resulted in the formation of Grt1 rim and Grt2.
文摘On the basis of geological studies of skarn deposits in China and by using thermodynamic models of thesolid solution, the coexisting clinopyroxene-garnet pair in skarn deposits has been analysed and a coexistingclinopyroxene-garnet acidometer developed. They can be used to estimate the medium condition under whichthe skarn was formed. The research on the acidity for the formation of various metallic skarn deposits in Chinasuggests that skarns endowed with dissimilar types of mineralization and occurring in diverse environments dif-fer in the acidity conditions for their formation and in the trend of acidity variation of ore-bearing fluid. This,coupled with the study of oxygen fugacity of coexisting minerals, makes it possible to establish the oxygenfugacity-acidity facies of skarn deposits, which reflect the close genetic relationship between the metallizationand the formation of skarn.
文摘Hydrothermal activity from a hydrothermal circulatory system is a special geological event, it is of importance to the formation of some massive sulfide deposits (hydrothermal deposits). The Authors think that Jiama polymetallic ore deposit in Gangdise tectonic zone, Tibet is a special skarn deposit i.e. a “hydrothermal\|metasomatic skarn deposit" bound up with benthonic hydrothermal circulatory system. Its important characteristics are as follows: 1 Evolution of the Gangdise island arc in studied area may be divided into three stages Middle Jurassic volcanic arc stage; Middle—Late Jurassic and Early Cretaceous inter arc sedimentary basin stage; and Eogene magmatic arc stage. The deposit is confined to the inter arc sedimentary basin. Existing data indicate that the volcanic arc provided Jiama deposit with abundant ore\|forming material; the inter arc sedimentary basin provided Jiama deposit with absolutely necessary space; the magmatic arc created reconcentration condition for the Jiama deposit.
文摘The authors discussed the metallogenic conditions of goldbearing skarn deposits along the middlelower Yangtze River reaches. Gold was enriched in mantleoriginated magmas while copper was enriched in crustoriginated magmas. So the enrichment of gold in skarn deposits was decided by the M/C ratios of the intrusive rocks. The distribution of these deposits was controlled not only by the localization of the intrusive rocks which were decided by Mesozoic Eradeveloped largescaled and deepseated faults, but also by the favorable stratigraphic horizons.
文摘For the first time, fluid-melt inclusions are found in fluorite of the Huanggangliang skarn iron-tin deposit (HSID). The fluorite was formed in the main stage of mineralization, named the hydro-skarnization stage. The inclusions contain various components such as Fe, Mg and Cr from deep sources. The melts of primary inclusions are mainly Ca- and F-rich and those of secondary inclusions tend to become Si-rich. During this evolution process, the melts and iron daughter minerals decreased and even vanished. These facts reveal that the evolution of the primary mineralizing fluids and the differentiation of the fluids and melts are the main factors leading to the deposition of Fe, Sn and other elements. This discovery confirms the magmatic genesis of the HSID and has filled in the gaps in the research of magmatogenic skarn deposits and furnished new methods for such research. Furthermore, it has enlarged the scope of the research on fluid inclusions.
基金the National Natural Science Foundation of China(Grant Nos.41820104007,91962218)and the China Scholarship Council(Grant No.201906690036).
文摘Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes.However,there are a number of mineralogical and analytical limitations to the approaches developed for the absolute dating of mineralizing systems,such as molybdenite Re-Os and zircon and garnet U-Pb,among others.This means that the precise and accurate dating of mineralizing systems that may not contain minerals suitable for dating using existing approaches requires the development of new(and ideally in situ)approaches to absolute dating.This study outlines a new in situ analytical approach that has the potential to rapidly and accurately evaluate the timing of ore formation.Our study employs a novel application of in situ scheelite U-Pb dating analysis using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)and samples from the Qiaomaishan deposit,a representative example of skarn mineralization within the Xuancheng ore district of eastern China.Our approach to scheelite dating of the deposit is verified by cross-comparison to dating of cogenetic garnet and apatite,proving the effectiveness of this approach.Our new approach to dating of scheelite-bearing geological systems is rapid,cheap,requires little sample preparation,and is undertaken in situ,allowing crucial geological and mineralogical context to be retained during analysis.The approaches outlined here not only allow the determination of the absolute timing of formation of the Qiaomaishan deposit through the U-Pb dating of scheelite[138.6±3.2 Ma,N=39,mean square weighted deviation(MSWD)=1.17],garnet(138.4±1.0 Ma,N=40,MSWD=1.3),and apatite(139.6+3.3 Ma,N=35,MSWD=0.72),but also further supports the theoretical genetic links between this mineralization and the emplacement of a proximal porphyritic granodiorite intrusion(zircon U-Pb age:139.5±1.2 Ma,N=23,MSWD=0.3).Moreover,our research indicates that the higher the concentrations of U within scheelite,the more suitable that scheelite is for U-Pb dating,with the main factor controlling the U content of scheelite seemingly being variations in oxygen fugacity conditions.This novel approach provides a potentially powerful tool,not just for the dating of skarn systems but also with potential applications in orogenic and intrusion-related gold,porphyry W-Mo,and greisen mineralizing systems as well as other scheelite-bearing geological bodies or geological systems.
基金supported by the National Natural Science Foundation of China(Nos.41572056 and 40802021)the Open Foundation from the State Key Laboratory for Mineral Deposits Research,Department of Earth Sciences in Nanjing University(No.17-1112-4)
文摘The small-scale Balugou Cu-Pb-Zn skarn deposit(45 298 tonnages of ore at 0.1% to 3.99% Cu, 0.20% to 0.43% Pb and 0.76% to 10.92% Zn) is located in the Wulonggou area in the eastern Kunlun orogen, NW China. Ore deposition is spatially and temporally related with the pre-collisional Anisian Balugou granites(~244 Ma). The mineralization hosted by the contact between marble beds within the Paleo-Proterozoic Jinshuikou Group and Balugou granites, was structurally and lithologically controlled. The mineralogy of the Balugou deposit includes an early simple skarn mineral gangue(epidote with little diopside) and a late complicated quartz sulfide assemblage(pyrite, pyrrhotite, chalcopyrite, sphalerite, galena, bornite, quartz, carbonate and chlorite). The δ34S values of eighteen sulfides range from-2.1‰ to +2.8 ‰, with an average of +0.07‰, and the calculated δ34SH2S values for H2 S in hydrothermal fluids range from-3.2‰ to +2.4‰, with an average of +0.03‰, suggesting a relatively homogeneous magmatic(±mantle) source, with sulfur produced directly by the Balugou granites. The sixteen sulfides have 206Pb/204 Pb ratios from 18.367 4 to 18.384 1, 207Pb/204 Pb ratios from 15.634 6 to 15.641 5, and 208Pb/204 Pb ratios from 38.455 5 to 38.485 0, which are close to those of K-feldspars from the Balugou granites, but are far away from age-corrected lead isotopic ratios of six wall-rock samples. So it was considered that the Pb sources of sulfides must be almost derived from the Balugou granites rather than the older wall-rocks. Collectively, it's suggested that the Balugou Cu-Pb-Zn deposit belongs to skarn deposit, and the sulfur and lead deposited in it were leached from the Anisian Balugou granites.
基金Projects(41172076,41802080)supported by the National Natural Science Foundation of ChinaProject(1212011085528)supported by Geological Survey Program from the China Geological Survey+3 种基金Project(2019CX035)supported by Innovation-driven Plan of Central South University,ChinaProject(201411025)supported by the Scientific Research Fund from Ministry of Land and Re-sources,ChinaProject(201309)supported by the Program of High-level Geological Talents,ChinaProject(201112)supported by the Youth Geological Talents of the China Geological Survey
文摘The ilvaite-bearing skarn associations in the Galinge skarn deposit were studied to determine their physicochemical formation conditions.A thermodynamic model setting pressure of 50 MPa(Pf=Ps=50 MPa)was set up to trace the skarn evolution.Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage(Stage I)combined with thermodynamic modeling suggests that the alteration may have occurred at 400470°C under moderately high fO withΔlgfO(HM)ranges from 4 to 4.2.The model is based on a maximum 22 pressure of 50 MPa calculated from magmatic amphibole geobarometer.The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage(Stage II).The reactions occurred at 400440°C under moderate fO(ΔlgfO(HM):4 to 4.4).In Stage III,the breakdown of ilvaite to form calcite,pyrite 22 and ferroactinolite depends on XCO which can be estimated to be in a range of 0.005 to 0.05,and the reaction would 2 occur at higher temperatures with increasing XCO.Under these conditions,the breakdown occurs at 270350°C and 2 low fO(ΔlgfO(HM):up to 5.2).The thermodynamic model for continuous evolution from Stage I to Stage III 22 completely records the conditions of the retrograde alteration,which is inconsistent with the thermobarometry imprints of fluid inclusions.Therefore,the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.
基金financially supported by funds from the National Key R&D Program of China(Grant Nos.2016YFC0600209,2016YFC0600206)the National Natural Science Foundation of China(Grant No.41820104007)+1 种基金the Scientific and Technological Program of Land and Resources of Anhui province(Grant No.2016-K-4)the China Scholarship Council(Grant No.201906690036)。
文摘The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41772081).
文摘The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling,broadly separated by the Shangdan suture zone.These two orogenic belts were generated by subduction-collisional processes in the Early Paleozoic and Late Triassic,respectively.During the Late Jurassic to Early Cretaceous,the eastern portion of the Qinling Orogen was tectonically reactivated due to westerly subduction of the Izanagi plate underneath the East China continental margin.The Qinling Orogen is well-endowed with numerous Au,Mo,Ag-Pb-Zn deposits that predominantly formed in the Late Triassic to Early Cretaceous,with rare Paleozoic varieties documented.In this study,we present garnet and zircon U-Pb dating results to show that the Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling orogenic belt formed in the Early Silurian and is genetically related to subduction-related magmatism.The Huoshenmiao deposit consists of lenticular and stratiform orebodies that contain massive or densely disseminated magnetite variably associated with garnet,diopside,epidote,hornblende,and actinolite.Garnets from iron ores are andradite and grossular in composition(Ad_(83.1)Gr_(13.3)-Ad_(86.5)Gr_(10.2))and characterized by enrichment in light rare earth elements(ΣLREE=57.85-103.82 ppm)and depletion in heavy rare earth elements(ΣHREE=5.50-11.34 ppm),with significantly positive Eu and Ce anomalies(δEu of 1.09-1.89 andδCe of 1.39-1.69).These compositional signatures are distinctly different from those of garnets in the ore-hosting metamorphic rocks that are typically dominated by almandine,spessartine and grossular(Al_(47.4)Sp_(30.4)Gr_(13.8)-Al_(51.9)Sp_(24.8)Gr_(17.6)),depleted in LREE(0.14-0.69 ppm),enriched in HREE(95.68-841.60 ppm)and have pronounced negative Eu anomalies(δEu=0.24-0.51).In addition,garnets from iron ores of the Huoshenmiao deposit contain abundant daughter mineral-bearing,multiphase fluid inclusions,further confirming their hydrothermal origin.Two samples of those hydrothermal garnets yield U-Pb dates of 437±9 Ma and 437±10 Ma(2σ),revealing a Paleozoic mineralization event that has long been ignored and rarely documented.These garnet dates agree well with zircon U-Pb dates of 438±4 Ma to 436±3 Ma for a gabbroic diorite and 430±4 Ma for a granite intrusion in close proximity of the mine,supporting a possible genetic link between the iron mineralization and Early Silurian magmatism.The Paleozoic intrusions are enriched in large ion lithophile elements(LILEs:Ba,K,Sr)and LREEs,depleted in high field strength elements(HFSEs:Nb,Ta,P,Ti),have whole-rock(^(87)Sr/^(86)Sr)i,ε_(Nd)(t),and zirconεHf(t)values of 0.7039-0.7042,3.32-4.33,and 13.0-14.9,respectively.These geochemical and isotopic characteristics suggest that the Paleozoic intrusions were affiliated with arc magmatism triggered by subduction of the Shangdan oceanic plate in the Early Paleozoic.Recognition of the Silurian Huoshenmiao iron skarn deposit opens a new window for exploration of Paleozoic mineral resources in the Tongbai area and other portions of the North Qinling Orogen.
基金supported by the National Basic Research Program of China(973 Program:2012CB416802)the National Special Research Programs for Non-Profit Trades(Sponsored by MLR,201311136)the Basic Scientific Research Operation Cost of StateLeveled Public Welfare Scientific Research Courtyard (K1203)
文摘The Chengchao iron deposit,the largest high-grade skarn iron deposit in southeastern Hubei Province,contains considerable amounts of magnetite and by-product anhydrite.To obtain better understanding of the ore-formation process,this study carried out He-Ar-S-Pb multi-isotopic analyses on the pyrites formed during two stages of mineralization.The results indicate that the δ34S values(ranging from 14.0‰ to 17.6‰) of pyrites formed from the two stages have no obvious differences,suggesting that they were not derived from a single magmatic sulfur source.The δ34S values of anhydrite mostly range from 21.9‰ to 28.4‰,similar to that of the Middle Triassic sedimentary anhydrite in the Middle-Lower Yangtze River metallogenic belt(MLYRB).The Pb isotopic compositions of the pyrites of both stages are homogeneous,with values of 208Pb/204Pb,207Pb/204Pb,and-206Pb/204Pb being 38.006-38.257,15.523-15.556,and 17.806-18.052,respectively,indicating a mixed crust-mantle source.The He-Ar results exhibit different compositions of the two stages:the -3He/-4He(R/Ra) and 40Ar/-36Ar values for the early-stage pyrite are 0.46-0.63 and 311-322,respectively,whereas the values for late-stage pyrite are 0.23-0.34 and 305-361,respectively.Both stages of pyrites indicate the multiple sources of the ore-forming fluids,with decreasing amount of magmatic water and increasing amount of modified meteoric water(MASW) during fluid evolution.The Triassic evaporites played an important role in the mineralization process.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
文摘Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of Tuolangla,a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Lower Cretaceous Bima Formation.It was intruded by granodiorite porphyry intrusions at about 23.1 Ma.Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry.Molybdenite yielded a Re-Os weighted mean age of 23.5±0.3 Ma and is considered to represent the age of skarn mineralization at the deposit.Theδ^34S values of sulfides,concentrated in a range between 0.6‰to 3.4‰,show that the sulfur has a homogeneous source with characteristics of magmatic sulfur.The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust.The granodiorite porphyry displays high SiO2(68.78%–69.75%)and K2O(3.40%–3.56%)contents,and relatively lower Cr(2.4×10^-6–4.09×10^-6),Ni(2.79×10^-6–3.58×10^-6)contents,and positiveεHf(t)values(7.7–12.9)indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust.The Tuolangla deposit is located in the central part of Zedang terrane.This terrane was once considered an ancient terrane.This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north.Thus,the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane.This finding may clarify why the Oligocene(about 23 Ma)deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene(17–14 Ma)mineralization.
文摘Yangla copper deposit is the largest banded skarn hosted copper deposit found recently in the Tethys orogenic belt of Southwestern China. On the basis of the study of distribution, petrology and mineralogy as well as major element, REE and isotope geochemistry, the authors find that the banded skarn, which hosts the deposit, was precipitated from hydrothermal solutions in the form of exhalate sediment. Therefore, the banded skarn hosted copper deposit is a Sedex type deposit, with a series of stacked, conformable lenses underlain by at least one stringer zone. The deposit, intercalated at the contact of lower clastic rock and upper carbonate rock of Gajinxueshan Group, was formed in the Carboniferous ((296.1±7.0) Ma), contemporary to the host Gajinxueshan Group. The interpretation of the genesis of Yangla banded skarn hosted copper deposit is of fundamental exploration significance for the discovery of Sedex type copper deposit in the region.
基金supported by the National Natural Science Foundation of China(Grant Nos:49625304 and 49633120)the Ministry of Land and Resources of China(Grant No.2000401)the Ministry of Science and Technology of China through a National Climbing Project 95-P-39.
文摘REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determined by the hydrothermal solutions involved in the infiltration metasomatism. The hydrothermal fluids are characterized by having slightly right-hand dipping REE patterns, being enriched in LREE and having strongly negative Eu anomalies. The uptake of REE from hydrothermal fluids during the growth of garnet crystals resulted in the garnets having similar REE patterns to the hydrothermal fluids. Based on the spatial variation of REE in skarns and the structures of the hosting strata, we can get a better understanding of the transport path and pattern of the fluids involved in the formation of skarns and their related deposits. REE geochemistry investigation can help elucidate the genesis of skarns and skarn-related deposits.
基金supported by the National Science Foundation of China (NSFC) project (40372049)
文摘The Langdu skarn copper deposit in the Zhongdian area, Yunnan Province, China, has an average Cu grade of 6.49 %. The deposit is related to a porphyry intrusion(*216 Ma), which was emplaced in the Upper Triassic sedimentary rocks of the Tumugou and Qugasi Formations.At the Langdu skarn copper deposit, carbon and oxygen isotope ratios of fresh limestones(d18O = 3.0–5.6 % relative to V-SMOW; d13 C = 24.5–25.7 % relative to PDB)and partly altered limestones(d18O = 27–7.2 to-1.9 %;d13C = 11.8–15.2 %) indicated that the deposit was a typical marine carbonate source. Oxygen and carbon isotope values for calcites formed at different hydrothermal stages are-9.1 to 0.2 and 10.1–16.3 %, respectively. Moreover,the carbon–oxygen isotopic composition of an ore-forming fluid(d18O = 5.0–9.5 %, d13 C =-7.3 to-5.3 %) suggested the presence of magmatic water, which most likely came from the differentiation or melting of a homologous magma chamber. The deposition of Calcite I may arise from metasomatism in an open system with a progressively decreasing temperature.Later, the minerals chalcopyrite, pyrrhotite, quartz and Calcite II were precipitated due to immiscibility. Water–rock interaction could potentially be responsible for Calcite III precipitation in the post-ore stage.
基金supported by the National Science Foundation of China(grants No.41372090 and 41573042)the National Special Research Programs for Non-Profit Trades (grant No.201311136)Basic Scientific Research Operation Cost of State-Leveled Public Welfare Scientific Research Courtyard(grant No.K1203)
文摘Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively uncommon mineral, has been dominantly discovered in some Carlin gold deposits, and minor Sb- Hg, U and Pb-Zn-Ag deposits.
基金the National Natural Science Foundation of China(41602083)the 111 Project of the Ministry of Science and Technology(BP0719021)the Fundamental Research Funds for the Central Universities(2652019045)。
文摘The Baiyinnuo’er deposit in northern China is located in the south section of the Great Xing’an Range,and it is the largest skarn Zn–Pb deposit in the region.Skarn and Zn–Pb orebodies mainly occur between the different units of the Permian Huanggangliang Formation,or within the contact zone between the intrusive rocks and the marble.Although Baiyinnuo’er has been well investigated previously,the timing of the Zn–Pb mineralization is still controversial,largely due to the lack of appropriate ore or alteration minerals that could be directly used for isotopic dating.In this study,we report the results of Rb–Sr isotopic analysis for sphalerite and pyrite samples from the Baiyinnuo’er orebodies,which yielded two isochron ages of 137.4±3.4 and 140.0±7.8 Ma,respectively,constraining the Zn–Pb mineralization time of the deposit as the Early Cretaceous.The data are also consistent with the age of the granitoids in the mining area,indicating a potential genetic relationship between the Early Cretaceous magmatism and mineralization.Many other intrusion-related hydrothermal deposits(including the two typical skarns,Huanggang and Haobugao)in the southern Great Xing’an Range also share similar mineralization ages(i.e.,140–130 Ma).Together,these data suggest an Early Cretaceous mineralization event in this region,and this largescale mineralization could be related to the regional tectonic regime transition from compression to extension as a result of the rollback of the subducted Paleo-Pacific plate.The initial87 Sr/86 Sr ratios of the sphalerite and pyrite samples are 0.70569 and 0.70616,respectively,implying that the ore-forming material could have a significant contribution from the mantle components.The current study shows that sulfide Rb–Sr dating could be used in deciphering the timing of skarn deposit formation.