A brief review of the recent advances in kerosene-fueled supersonic combustion modeling is present by comparing the fuels,reviewing the kinetic mechanisms,and introducing recent modeling results.The advantages and dis...A brief review of the recent advances in kerosene-fueled supersonic combustion modeling is present by comparing the fuels,reviewing the kinetic mechanisms,and introducing recent modeling results.The advantages and disadvantages of hydrogen and kerosene for the scramjet combustor are compared to show that kerosene is a more viable fuel option for a Mach number range of 4-8.However,detailed kinetic mechanisms for kerosene,which usually contain thousands of elementary reactions,must be significantly reduced for use in modeling.As of this writing,the smallest skeletal kerosene mechanism has only 19 species and 53 reversible reactions.In contrast to pioneer models based on global chemistry,the current kerosene-fueled supersonic combustion models based on reduced/skeletal chemistry are classified as second-stage.The influence of kinetic mechanisms,global equivalence ratios,inlet Mach number,geometric shape,and domain symmetry are reviewed based on high-fidelity models and available measurements.With the advances in computational technology,models with accurate descriptions of both flow and chemistry are becoming a promising,indispensable approach for the study of supersonic combustion.展开更多
Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bi...Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bionic inspiration for unmanned aerial vehicles(UAV)design.However,morphing wing motions of Falco peregrinus with multi postures cannot be consulted since such a motion database was nonexistent.This study aimed to provide data reference for future research in wing morphing kinetics.We used the computed tomography(CT)approach to obtain nine critical postures of the Falco peregrinus wing skeleton,followed with motion analysis of each joint and bone.Based on the obtained motion database,a six-bar kinematic model was proposed to regenerate wing motions with a high fidelity.展开更多
基金This research is supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China(Grant 91641110)the National Natural Science Foundation of China(Grant 11502270)+1 种基金the State Key Laboratory of High Temperature Gas Dynamics Innovative Foundation(Grant LHD2018JS01)The authors are grateful to the National Supercomputer Center in Tianjin for providing the computational resource.
文摘A brief review of the recent advances in kerosene-fueled supersonic combustion modeling is present by comparing the fuels,reviewing the kinetic mechanisms,and introducing recent modeling results.The advantages and disadvantages of hydrogen and kerosene for the scramjet combustor are compared to show that kerosene is a more viable fuel option for a Mach number range of 4-8.However,detailed kinetic mechanisms for kerosene,which usually contain thousands of elementary reactions,must be significantly reduced for use in modeling.As of this writing,the smallest skeletal kerosene mechanism has only 19 species and 53 reversible reactions.In contrast to pioneer models based on global chemistry,the current kerosene-fueled supersonic combustion models based on reduced/skeletal chemistry are classified as second-stage.The influence of kinetic mechanisms,global equivalence ratios,inlet Mach number,geometric shape,and domain symmetry are reviewed based on high-fidelity models and available measurements.With the advances in computational technology,models with accurate descriptions of both flow and chemistry are becoming a promising,indispensable approach for the study of supersonic combustion.
基金supported by the National Natural Science Foundation of China(Grant Nos.52175279,52075489,and 51705459)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20E050022 and LGG20E050017)。
文摘Raptors are getting more attention from researchers because of their excellent flight abilities.And the excellent wing morphing ability is critical for raptors to achieve high maneuvering flight,which can be a good bionic inspiration for unmanned aerial vehicles(UAV)design.However,morphing wing motions of Falco peregrinus with multi postures cannot be consulted since such a motion database was nonexistent.This study aimed to provide data reference for future research in wing morphing kinetics.We used the computed tomography(CT)approach to obtain nine critical postures of the Falco peregrinus wing skeleton,followed with motion analysis of each joint and bone.Based on the obtained motion database,a six-bar kinematic model was proposed to regenerate wing motions with a high fidelity.