期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
Catalpa bignonioides extract improves exercise performance through regulation of growth and metabolism in skeletal muscles
1
作者 Hoibin Jeong Dong-joo Lee +11 位作者 Sung-Pil Kwon SeonJu Park Song-Rae Kim Seung Hyun Kim Jae-Il Park Deug-chan Lee Kyung-Min Choi WonWoo Lee Ji-Won Park Bohyun Yun Su-Hyeon Cho Kil-Nam Kim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期47-54,共8页
Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol... Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine(BrdU)assay kit.Western blot analysis was performed to determine the protein expressions of related factors.The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay.Chemical composition analysis was performed using high-performance liquid chromatography(HPLC).Results:Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway.It also induced metabolic changes,increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase.In an in vivo study,the extract-treated mice showed improved motor abilities,such as muscular endurance and grip strength.Additionally,HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength.Conclusions:Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles,suggesting its potential as an effective natural agent for improving muscular strength. 展开更多
关键词 Catalpa bignonioides skeletal muscle Cell proliferation MITOCHONDRIA Energy metabolism C2C12
下载PDF
Effects of Soybean Isoflavones on In vitro Antioxidative Capacity of Satellite Cells of Porcine Skeletal Muscles 被引量:6
2
作者 JIANG Zong-yong ZHOU Gui-lian LIN Ying-cai JIANG Shou-qun ZHENG Chun-tian HAN Li-ming CHEN Fang 《Agricultural Sciences in China》 CAS CSCD 2011年第1期120-125,共6页
A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacit... A synthetic isoflavone (ISO-S) or genistein was added in culture medium at different concentrations (0, 10, 20, 30, 40, and 80 p.mol L^-1) to investigate the effects of soybean isoflavones on antioxidative capacity of porcine skeletal muscle satellite cells. After 48 h incubation, the suspension was cryopreserved for the determination of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and malondialdehyde (MDA) content. The mRNA levels of SOD, CAT, and GSH-Px gene in cells were detected with Taqman fluorescent probe method. The results showed that the content of MDA and the activities and the mRNA levels of SOD of porcine skeletal muscle satellite cells were influenced by supplemented soybean isoflavone (P〈0.05) when adding 10-80 μmol L^-1 ISO-S or genistein in the medium. The MDA contents, SOD and CAT activities and their mRNA expression levels of porcine skeletal muscle cells responded quadratically (P〈 0.05) as the level of ISO-S or genistein increased. Pre-incubation of porcine skeletal muscle satellite cells with ISO-S or genistein at 10-40 pmol L-1 elevated the activities and the mRNA expression levels of SOD and CAT in cells concurrently and decreased the cellular content of MDA (P〈 0.05). The results indicated that pre-incubation of ISO-S or genistein at 10- 40μmol L^-1 could improve the antioxidative capacity of porcine skeletal muscle satellite cells. 展开更多
关键词 soybean isoflavone antioxidative capacity superoxide dismutase CATALASE skeletal muscle satellite cells
下载PDF
Berberine Inhibits Gluconeogenesis in Skeletal Muscles and Adipose Tissues in Streptozotocin-induced Diabetic Rats via LKB1-AMPK-TORC2 Signaling Pathway 被引量:6
3
作者 Xiao-hu XU Qian HU +4 位作者 Li-shan ZHOU Li-jun XU Xin ZOU Fu-er LU Ping YI 《Current Medical Science》 SCIE CAS 2020年第3期530-538,共9页
The effect and potential molecular mechanisms of berberine on gluconeogenesis in skeletal muscles and adipose tissues were investigated.After adaptive feeding for one week,8 rats were randomly selected as the normal g... The effect and potential molecular mechanisms of berberine on gluconeogenesis in skeletal muscles and adipose tissues were investigated.After adaptive feeding for one week,8 rats were randomly selected as the normal group and fed on a standard diet.The remaining 32 rats were fed on a high-fat diet and given an intravenous injection of streptozotocin(STZ)for 2 weeks to induce the diabetic models.The diabetic rat models were confirmed by oral glucose tolerance test(OGTT)and randomly divided into 4 groups(n=8 each),which were all fed on a high-fat diet.Berberine(3 g/kg per day)or metformin(183 mg/kg per day)was intragastrically administered to the diabetic rats for 12 weeks,serving as berberine group and metformin group respectively.5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside[AICAR,an agonist of AMP-activated protein kinase(AMPK),0.5 mg/kg per day]was subcutaneously injected to the diabetic rats for 12 weeks,serving as AICAR group.The remaining 8 diabetic rats served as the model group,which was given a 0.5%carboxyl methylcellulose solution by oral gavage.Fasting serum insulin(FINS),OGTT as well as lipid parameters were tested by commercial kit.The protein levels of liver kinase B1(LKB1),AMPK,phosphorylated AMP-activated protein kinase(p-AMPK),transducer of regulated CREB activity 2(TORC2),phosphorylated transducer of regulated CREB activity 2(p-TORC2),phosphoenolpyruvate carboxykinase(PEPCK),and glucose-6-phosphatase(G6Pase)in skeletal muscles and adipose tissues were examined by Western blotting.The results showed that berberine significantly decreased the body weight,plasma glucose,insulin levels,and homeostatic model assessment for insulin resistance(HOMA-IR)of diabetic rats compared with those in the model group.Meanwhile,the serum total triglyceride(TG),total cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C)levels were markedly decreased and high-density lipoprotein cholesterol(HDL-C)level was significantly increased after the treatment with berberine.In addition,we found that berberine significantly increased the expression of p-AMPK and LKB1,while decreasing the p-TORC2 levels in skeletal muscles and adipose tissues.Moreover,the expression of PEPCK and G6Pase was significantly down-regulated after the treatment with berberine compared to the model group.It was suggested that the mechanism by which berberine inhibited peripheral tissue gluconeogenesis may be attributed to the activation of the LKB1-AMPK-TORC2 signaling pathway. 展开更多
关键词 BERBERINE GLUCONEOGENESIS skeletal muscle adipose tissue LKB1-AMPK-TORC2
下载PDF
Differentiation of expression profi les of two calcineurin subunit genes in chicken skeletal muscles during early postnatal growth depending on anatomical location of muscles and breed
4
作者 SHAN Yan-ju XU Wen-juan +5 位作者 SHU Jing-ting ZHANG Ming SONG Wei-tao TAO Zhi-yun ZHU Chun-hong LI Hui-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1085-1094,共10页
Calcineurin(Cn or CaN) is implicated in the control of skeletal muscle fiber phenotype and hypertrophy. However, little information is available concerning the expression of Cn in chickens. In the present study, the... Calcineurin(Cn or CaN) is implicated in the control of skeletal muscle fiber phenotype and hypertrophy. However, little information is available concerning the expression of Cn in chickens. In the present study, the expression of two Cn subunit genes(Cn Aα and Cn B1) was quantified by q PCR in the lateral gastrocnemius(LG, mainly composing of red fast-twitch myofibers), the soleus(mainly composing of red slow-twitch myofibers) and the extensor digitorum longus(EDL, mainly composing of white fast-twitch myofibers) from Qingyuan partridge chickens(QY, slow-growing chicken breed) and Recessive White chickens(RW, fast-growing chicken breed) on different days(1, 8, 22, 36, 50 and 64 days post-hatching). Although Cn Aα and Cn B1 gene expressions were variable with different trends in different skeletal muscles in the two chicken breeds during postnatal growth, it is highly muscle phenotype and breed specific. In general, the levels of Cn Aα and Cn B1 gene expressions of the soleus were lower than those of EDL and LG in both chicken breeds at the same stages. Compared between the two chicken breeds, the levels of Cn Aα gene expression of the three skeletal muscles in QY chickens were higher than those in RW chickens on days 1 and 22. However, on day 64, the levels of both Cn Aα and Cn B1 gene expressions of the three skeletal muscles were lower in QY chickens than those in RW chickens. Correlation analysis of the levels of Cn Aα and Cn B1 gene expressions of the same skeletal muscle showed that there were positive correlations for all three skeletal muscle tissues in two chicken breeds. These results provide some valuable clues to understand the role of Cn in the development of chicken skeletal muscles, with a function that may be related to meat quality. 展开更多
关键词 CALCINEURIN CHICKEN skeletal muscle EXPRESSION
下载PDF
Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis:a narrative review
5
作者 Peter H.King 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期747-753,共7页
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is ... Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis. 展开更多
关键词 amyotrophic lateral sclerosis biomarkers clinicopathological correlation disease progression muscle biomarkers neurogenic atrophy neuromuscular junction non-coding RNAs presymptomatic stages skeletal muscle SOD1G93A mouse model
下载PDF
A"messenger zone hypothesis"based on the visual three-dimensional spatial distribution of motoneurons innervating deep limb muscles
6
作者 Chen Huang Shen Wang +3 位作者 Jin Deng Xinyi Gu Shuhang Guo Xiaofeng Yin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1559-1567,共9页
Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneuro... Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits. 展开更多
关键词 3-D imaging MOTONEURONS multiple retrograde tracing muscle coordination skeletal muscle spatial distribution optical tissue clearing
下载PDF
SWIR FluorescenceImaging In Vivo Monitoring and Evaluating Implanted M2 Macrophages in Skeletal Muscle Regeneration
7
作者 Mo Chen Yuzhou Chen +9 位作者 Sijia Feng Shixian Dong Luyi Sun Huizhu Li Fuchun Chen Nguyen Thi Kim Thanh Yunxia Li Shiyi Chen You Wang Jun Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期283-294,共12页
Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challe... Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration. 展开更多
关键词 In vivo Short-wave infrared skeletal muscle MACROPHAGE REGENERATION
下载PDF
Low skeletal muscle mass and high visceral adiposity are associated with recurrence of acute cholecystitis after conservative management:A propensity score-matched cohort study
8
作者 Yudai Koya Michihiko Shibata +5 位作者 Yuki Maruno Yoshitaka Sakamoto Shinji Oe Koichiro Miyagawa Yuichi Honma Masaru Harada 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第1期64-70,共7页
Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity hav... Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity have various effects in several diseases.We aimed to clarify the relationship between RAC and body parameters.Methods:Patients with AC who were treated at our hospital between January 2011 and March 2022 were enrolled.The psoas muscle mass and adipose tissue area at the third lumbar level were measured using computed tomography at the first episode of AC.The areas were divided by height to obtain the psoas muscle mass index(PMI)and subcutaneous/visceral adipose tissue index(SATI/VATI).According to median VATI,SATI and PMI values by sex,patients were divided into the high and low PMI groups.We performed propensity score matching to eliminate the baseline differences between the high PMI and low PMI groups and analyzed the cumulative incidence and predictors of RAC.Results:The entire cohort was divided into the high PMI(n=81)and low PMI(n=80)groups.In the propensity score-matched cohort there were 57 patients in each group.In Kaplan-Meier analysis,the low PMI group and the high VATI group had a significantly higher cumulative incidence of RAC than their counterparts(log-rank P=0.001 and 0.015,respectively).In a multivariate Cox regression analysis,the hazard ratios of low PMI and low VATI for RAC were 5.250(95%confidence interval 1.083-25.450,P=0.039)and 0.158(95%confidence interval:0.026-0.937,P=0.042),respectively.Conclusions:Low skeletal muscle mass and high visceral adiposity were independent risk factors for RAC. 展开更多
关键词 Acute cholecystitis Low skeletal muscle mass Recurrent acute cholecystitis SARCOPENIA Visceral adiposity
下载PDF
Mitochondrial dysfunction in type 2 diabetes:A neglected path to skeletal muscle atrophy
9
作者 Jian-Jun Wu Hui-Min Xian +1 位作者 Da-Wei Yang Fan Yang 《World Journal of Orthopedics》 2024年第2期101-104,共4页
Over the course of several decades,robust research has firmly established the significance of mitochondrial pathology as a central contributor to the onset of skeletal muscle atrophy in individuals with diabetes.Howev... Over the course of several decades,robust research has firmly established the significance of mitochondrial pathology as a central contributor to the onset of skeletal muscle atrophy in individuals with diabetes.However,the specific intricacies governing this process remain elusive.Extensive evidence highlights that individuals with diabetes regularly confront the severe consequences of skeletal muscle degradation.Deciphering the sophisticated mechanisms at the core of this pathology requires a thorough and meticulous exploration into the nuanced factors intricately associated with mitochondrial dysfunction. 展开更多
关键词 Mfn-2 Oxidative stress Mitochondria metabolism skeletal muscle atrophy DIABETES
下载PDF
Maternal intake restriction programs the energy metabolism, clock circadian regulator and m TOR signals in the skeletal muscles of goat offspring probably via the protein kinase A-cAMP-responsive element-binding proteins pathway 被引量:2
10
作者 Xiaoling Zhou Qiongxian Yan +3 位作者 Hong Yang Ao Ren Zhixiong He Zhiliang Tan 《Animal Nutrition》 SCIE CSCD 2021年第4期1303-1314,共12页
The biological mechanism by which maternal undernutrition increases the metabolic disorder risk of skeletal muscles in offspring is not fully understood.We hypothesize that maternal intake restriction influences metab... The biological mechanism by which maternal undernutrition increases the metabolic disorder risk of skeletal muscles in offspring is not fully understood.We hypothesize that maternal intake restriction influences metabolic signals in the skeletal muscles of offspring via a glucagon-mediated pathway.Twentyfour pregnant goats were assigned to the control group(100%of the nutrients requirement,n=12)and restricted group(60%of the control feed allowance from pregnant days 45 to 100,n=12).Blood and Longissimus thoracis muscle were sampled from dams(100 d of gestation),fetuses(100 d of gestation),and kids(90 d after birth)in each group.The data were analyzed using the linear MIXED model,with the multiple comparison method of SIDAK applied.Intake restriction reduced(P<0.05)the total blood protein of dams and fetuses.Maternal restriction decreased(P<0.05)the cAMP-responsive element-binding protein 1(CREB1),CREB-binding protein(CREBBP),protein kinase A(PKA),aryl hydrocarbon receptor nuclear translocator-like protein 1(BMAL1),protein kinase B(AKT1),mammalian target of rapamycin(mTOR),and regulatory-associated protein of mTOR(RPTOR)mRNA expression in the fetuses,and reduced(P<0.05)the CREBBP,nuclear receptor subfamily 1 group H member 3(NR1 H3),D-box binding PAR bZIP transcription factor(DBP)and PKA mRNA levels in the kids,but increased(P<0.05)the peroxisome proliferator-activated receptor gamma coactivator 1 alpha(PGC1 A)and tuberous sclerosis 2(TSC2)mRNA levels in the fetuses.The mRNA expression of clock circadian regulator(CLOCK)and TSC2 genes was increased(P<0.05)in the restricted kids.The protein expression of total PKA and phosphorylated PKA in the restricted fetuses and kids were downregulated(P<0.05),and the protein expression of total mTOR and phosphorylated mTOR were reduced(P<0.05)in the restricted fetuses and kids.Maternal intake restriction regulated fat oxidation,protein synthesis,and circadian clock expression in the muscles of the offspring probably via the glucagon-mediated PKA-CREB pathway,which reveals a noteworthy molecular pathway that maternal undernutrition leads to metabolic adaptation of skeletal muscle in offspring. 展开更多
关键词 Maternal effect skeletal muscle Fat oxidation Protein synthesis Circadian clock GOAT
原文传递
Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury 被引量:3
11
作者 Ali Myatich Azizul Haque +1 位作者 Christopher Sole Naren L.Banik 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期940-946,共7页
Spinal cord injuries affect nearly five to ten individuals per million every year. Spinal cord injury causes damage to the nerves, muscles, and the tissue surrounding the spinal cord. Depending on the severity, spinal... Spinal cord injuries affect nearly five to ten individuals per million every year. Spinal cord injury causes damage to the nerves, muscles, and the tissue surrounding the spinal cord. Depending on the severity, spinal injuries are linked to degeneration of axons and myelin, resulting in neuronal impairment and skeletal muscle weakness and atrophy. The protection of neurons and promotion of myelin regeneration during spinal cord injury is important for recovery of function following spinal cord injury. Current treatments have little to no effect on spinal cord injury and neurogenic muscle loss. Clemastine, an Food and Drug Administration-approved antihistamine drug, reduces inflammation, protects cells, promotes remyelination, and preserves myelin integrity. Recent clinical evidence suggests that clemastine can decrease the loss of axons after spinal cord injury, stimulating the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes that are capable of myelination. While clemastine can aid not only in the remyelination and preservation of myelin sheath integrity, it also protects neurons. However, its role in neurogenic muscle loss remains unclear. This review discusses the pathophysiology of spinal cord injury, and the role of clemastine in the protection of neurons, myelin, and axons as well as attenuation of skeletal muscle loss following spinal cord injury. 展开更多
关键词 axonal damage CLEMASTINE MYELINATION neuronal death OLIGODENDROCYTES skeletal muscle spinal cord injury
下载PDF
Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress
12
作者 Jinzhong Jing Ying He +10 位作者 Yan Liu Jiayong Tang Longqiong Wang Gang Jia Guangmang Liu Xiaoling Chen Gang Tian Jingyi Cai Lianqiang Che Bo Kang Hua Zhao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期2180-2196,共17页
Background The skeletal muscle of pigs is vulnerable to oxidative damage,resulting in growth retardation.Selenoproteins are important components of antioxidant systems for animals,which are generally regulated by diet... Background The skeletal muscle of pigs is vulnerable to oxidative damage,resulting in growth retardation.Selenoproteins are important components of antioxidant systems for animals,which are generally regulated by dietary selenium(Se)level.Here,we developed the dietary oxidative stress(DOS)-inducing pig model to investigate the protective effects of selenoproteins on DOS-induced skeletal muscle growth retardation.Results Dietary oxidative stress caused porcine skeletal muscle oxidative damage and growth retardation,which is accompanied by mitochondrial dysfunction,endoplasmic reticulum(ER)stress,and protein and lipid metabolism disorders.Supplementation with Se(0.3,0.6 or 0.9 mg Se/kg)in form of hydroxy selenomethionine(OH-SeMet)linearly increased muscular Se deposition and exhibited protective effects via regulating the expression of selenotranscriptome and key selenoproteins,which was mainly reflected in lower ROS levels and higher antioxidant capacity in skeletal muscle,and the mitigation of mitochondrial dysfunction and ER stress.What’s more,selenoproteins inhibited DOS induced protein and lipid degradation and improved protein and lipid biosynthesis via regulating AKT/mTOR/S6K1 and AMPK/SREBP-1 signalling pathways in skeletal muscle.However,several parameters such as the activity of GSH-Px and T-SOD,the protein abundance of JNK2,CLPP,SELENOS and SELENOF did not show dose-dependent changes.Notably,several key selenoproteins such as MSRB1,SELENOW,SELENOM,SELENON and SELENOS play the unique roles during this protection.Conclusions Increased expression of selenoproteins by dietary OH-SeMet could synergistically alleviate mitochondrial dysfunction and ER stress,recover protein and lipid biosynthesis,thus alleviate skeletal muscle growth retardation.Our study provides preventive measure for OS-dependent skeletal muscle retardation in livestock husbandry. 展开更多
关键词 Dietary oxidative stress Endoplasmic reticulum stress Growth retardation Mitochondrial dysfunction SELENOPROTEINS skeletal muscle
下载PDF
SCSMRD: A database for single-cell skeletal muscle regeneration
13
作者 FENG Xi-kang XIE Chun-di +2 位作者 LI Yong-yao WANG Zi-shuai BAI Li-jing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期864-871,共8页
Skeletal muscle regeneration is a complex process where various cell types and cytokines are involved.Single-cell RNA-sequencing (scRNA-seq) provides the opportunity to deconvolute heterogeneous tissue into individual... Skeletal muscle regeneration is a complex process where various cell types and cytokines are involved.Single-cell RNA-sequencing (scRNA-seq) provides the opportunity to deconvolute heterogeneous tissue into individual cells based on their transcriptomic profiles.Recent scRNA-seq studies on mouse muscle regeneration have provided insights to understand the transcriptional dynamics that underpin muscle regeneration.However,a database to investigate gene expression profiling during skeletal muscle regeneration at the single-cell level is lacking.Here,we collected over 105 000 cells at 7 key regenerative time-points and non-injured muscles and developed a database,the Singlecell Skeletal Muscle Regeneration Database (SCSMRD).SCSMRD allows users to search the dynamic expression profiles of genes of interest across different cell types during the skeletal muscle regeneration process.It also provides a network to show the activity of regulons in different cell types at different time points.Pesudotime analysis showed the state changes trajectory of muscle stem cells (MuSCs) during skeletal muscle regeneration.This database is freely available at https://scsmrd.fengs-lab.com. 展开更多
关键词 scRNA-seq skeletal muscle regeneration DATABASE regulon network pseudotime
下载PDF
Skeletal muscle atrophy,regeneration,and dysfunction in heart failure:Impact of exercise training
14
作者 Harrison Gallagher Paul W.Hendrickse +1 位作者 Marcelo G.Pereira T.Scott Bowen 《Journal of Sport and Health Science》 SCIE CAS CSCD 2023年第5期557-567,F0003,共12页
This review highlights some established and some more contemporary mechanisms responsible for heart failure(HF)-induced skeletal muscle wasting and weakness.We first describe the effects of HF on the relationship betw... This review highlights some established and some more contemporary mechanisms responsible for heart failure(HF)-induced skeletal muscle wasting and weakness.We first describe the effects of HF on the relationship between protein synthesis and degradation rates,which determine muscle mass,the involvement of the satellite cells for continual muscle regeneration,and changes in myofiber calcium homeostasis linked to contractile dysfunction.We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment.Overall,HF causes multiple impairments related to autophagy,anabolic-catabolic signaling,satellite cell proliferation,and calcium homeostasis,which together promote fiber atrophy,contractile dysfunction,and impaired regeneration.Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF,the effects of satellite cell dynamics remain poorly explored. 展开更多
关键词 CALCIUM Exercise training Heart failure Satellite cells skeletal muscle wastingTagedAPTARAEnd
下载PDF
Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism
15
作者 William T.Moore Jing Luo Dongmin Liu 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2087-2094,共8页
Insulin resistance is a hallmark of type-2 diabetes(T2D)pathogenesis.Because skeletal muscle(SkM)is the major tissue for insulin-mediated glucose disposal,insulin resistance in SkM is considered a major risk factor fo... Insulin resistance is a hallmark of type-2 diabetes(T2D)pathogenesis.Because skeletal muscle(SkM)is the major tissue for insulin-mediated glucose disposal,insulin resistance in SkM is considered a major risk factor for developing T2D.Thus,the identifi cation of compounds that enhance the ability of SkM to take up glucose is a promising strategy for preventing T2D.Our previous work showed that kaempferol,a fl avonol present in many foods,improves insulin sensitivity in obese mice,however,the mechanism underlying this beneficial action remains unclear.Here,we show that kaempferol directly stimulates glucose uptake and prevents lipotoxicity-impaired glucose uptake in primary human SkM.Kaempferol stimulates Akt phosphorylation in a time-dependent manner in human SkM cells.The effect of kaempferol on glucose uptake was blunted by inhibition of glucose transporter 4,phosphoinositide 3-kinase(PI3K),or AMPK.In addition,kaempferol induced AMPK phosphorylation,and inhibition of AMPK prevented kaempferol-stimulated Akt phosphorylation.In vivo,kaempferol administration induced rapid glucose disposal accompanied with increased Akt and AMPK phosphorylation in SkM tissue of the mice.Taken together,these fi ndings suggest that kaempferol stimulates glucose uptake in SkM via an AMPK/Akt dependent mechanism,and it may be a viable therapeutic agent for insulin resistance. 展开更多
关键词 KAEMPFEROL skeletal muscle AMPK AKT Insulin resistance
下载PDF
Age-dependent Changes in Skeletal Muscle Mass and Visceral Fat Area in a Chinese Population
16
作者 Shu-jing JI Zhan-hong QIAN +1 位作者 Pei-ying HU Fang-yao CHEN 《Current Medical Science》 SCIE CAS 2023年第4期838-844,共7页
Objective:The present study was conducted to demonstrate the age-dependent changes in skeletal muscle mass and visceral fat area in a population of Chinese adults aged 30-92 years old.Methods:A total of 6669 healthy C... Objective:The present study was conducted to demonstrate the age-dependent changes in skeletal muscle mass and visceral fat area in a population of Chinese adults aged 30-92 years old.Methods:A total of 6669 healthy Chinese men and 4494 healthy Chinese women aged 30-92 years old were assessed for their skeletal muscle mass and visceral fat area.Results:The results showed age-dependent decreases in the total skeletal muscle mass indexes in both men and women aged 40-92 years old as well as age-dependent increases in the visceral fat area in men aged 30-92 years old and in women aged 30-80 years old.Multivariate regression models showed that the total skeletal muscle mass index was positively associated with the body mass index and negatively associated with the age and visceral fat area in both sexes.Conclusion:The loss of skeletal muscle mass becomes obvious at approximately 50 years of age,and the visceral fat area commences to increase at approximately 40 years of age in this Chinese population. 展开更多
关键词 skeletal muscle mass visceral fat area China AGING
下载PDF
The role of 5′-adenosine monophosphate-activated protein kinase(AMPK)in skeletal muscle atrophy
17
作者 KAI DANG HAFIZ MUHAMMAD UMER FAROOQ +2 位作者 YUAN GAO XIAONI DENG AIRONG QIAN 《BIOCELL》 SCIE 2023年第2期269-281,共13页
As a key coordinator of metabolism,AMP-activated protein kinase(AMPK)is vitally involved in skeletal muscle maintenance.AMPK exerts its cellular effects through its function as a serine/threonine protein kinase by reg... As a key coordinator of metabolism,AMP-activated protein kinase(AMPK)is vitally involved in skeletal muscle maintenance.AMPK exerts its cellular effects through its function as a serine/threonine protein kinase by regulating many downstream targets and plays important roles in the development and growth of skeletal muscle.AMPK is activated by phosphorylation and exerts its function as a kinase in many processes,including synthesis and degradation of proteins,mitochondrial biogenesis,glucose uptake,and fatty acid and cholesterol metabolism.Skeletal muscle atrophy is a result of various diseases or disorders and is characterized by a decrease in muscle mass.The pathogenesis and therapeutic strategies of skeletal muscle atrophy are still under investigation.In this review,we discuss the role of AMPK in skeletal muscle metabolism and atrophy.We also discuss targeting AMPK for skeletal muscle treatment,including exercise,AMPK activators including 5-amino-4-imidazolecarboxamide ribonucleoside and metformin,and low-level lasers.These studies show the important roles of AMPK in regulating muscle metabolism and function;thus,the treatment of skeletal muscle atrophy needs to take into account the roles of AMPK. 展开更多
关键词 AMPK Autophagy Protein degradation Protein synthesis skeletal muscle atrophy Ubiquitin
下载PDF
Effects of Astragalus membranaceus on Energy Metabolism and Expression of CNTF Protein in Skeletal Muscle of Exercise-induced Fatigue Rats
18
作者 Yueqi ZHOU Xue ZHANG +6 位作者 Zelin ZHAO Yuanxia SHEN Li YANG Song WANG Junying TIAN Sibu MA Shiyan HUANG 《Agricultural Biotechnology》 2023年第6期19-24,29,共7页
[Objectives]This study was conducted to investigate the effects of Astragalus membranaceus in different groups on energy metabolism and CNTF protein expression in skeletal muscle of exercise-induced fatigue rats.[Meth... [Objectives]This study was conducted to investigate the effects of Astragalus membranaceus in different groups on energy metabolism and CNTF protein expression in skeletal muscle of exercise-induced fatigue rats.[Methods]Thirty-five clean male SD rats were randomly divided into a normal group,and low-,meddle-and high-dose groups of A.membranaceus aqueous solution,with 7 rats in each group.The low-dose,medium-dose and high-dose groups were given by gavage at 0.65,1.3 and 2.6 g/kg,respectively,while the normal group and the model group were given normal food and water.The weight of rats was observed.The contents of serum urea,lactate,muscle glycogen,liver glycogen and CNTF expression were detected.[Results]After modeling,compared with the normal group,the serum lactate and urea contents of rats in the model group significantly increased(P<0.01),while the muscle glycogen content(P<0.01)and liver glycogen content(P<0.05)of the skeletal muscle significantly decreased.Compared with the model group,the low-,meddle-and high-dose groups of A.membranaceus significantly reduced the levels of lactate and urea in serum(P<0.01),while the levels of muscle glycogen and liver glycogen in the skeletal muscle significantly increased(P<0.01,P<0.05).[Conclusions]This study provides a good research foundation for the treatment of exercise-induced fatigue using traditional Chinese herb A.membranaceus in modern clinical practice. 展开更多
关键词 Astragalus membranaceus Exercise fatigue Energy metabolism skeletal muscle Expression of CNTF protein
下载PDF
Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs
19
作者 Mu Zeng Binhu Wang +2 位作者 Lei Liu Yalan Yang Zhonglin Tang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期217-227,共11页
Growth traits are among the most important economic traits in pigs and are regulated by polygenes with complex regulatory mechanisms.As the major indicators of growth performance,the backfat thickness(BFT),loin eye ar... Growth traits are among the most important economic traits in pigs and are regulated by polygenes with complex regulatory mechanisms.As the major indicators of growth performance,the backfat thickness(BFT),loin eye area(LEA),and days to 100 kg(D100)traits are commonly used to the genetics improvement in pigs.However,the available genetic markers for these traits are limited.To uncover novel loci and candidate genes associated with growth performance,we collected the phenotypic information of BFT,LEA,and D100 in 1,186 pigs and genotyped all these individuals using the Neogen GGP porcine 80K BeadChip.We performed a genome-wide association study(GWAS)using 4 statistical models,including mixed linear models(MLM),fixed and random model circulating probability unification(FarmCPU),settlement of MLM under progressively exclusive relationships(SUPER),Bayesian-information and linkage-disequilibrium Iteratively nested keyway(Blink),and identified 5,3,and 6 high-confidence single nucleotide polymorphisms(SNPs)associated with BFT,LEA,and D100,respectively.Variant annotation and quantitative trait locus(QTL)mapping analysis suggested that6 genes(SKAP2,SATB1,PDE7B,PPP1R16B,WNT3,and WNT9B)were potentially associated with growth performance in pigs.Transcriptome analysis suggested that the expression of Src Kinase Associated Phosphoprotein 2(SKAP2)was higher in prenatal muscles than in postnatal muscles,and the expression of Phosphodiesterase 7B(PDE7B)continuously increased during the prenatal stages and gradually decreased after birth,implying their potential roles in prenatal skeletal muscle development.Overall,this study provides new candidate loci and genes for the genetic improvement of pigs. 展开更多
关键词 GWAS PIG growth trait QTL mapping skeletal muscle
下载PDF
Veratrilla baillonii Franch alleviate the symptoms of diabetes in type 2 diabetic rats induced by high-fat diet and streptozotocin
20
作者 Chunlan Yan Zhihao Zhang +5 位作者 Liqun Ma Xinyi Xu Muhammad Azhar Xianju Huang Jianxun Shi Jun Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1378-1389,共12页
Our previous research studies have shown that Veratrilla baillonii Franch,a food supplement used by ethnic minorities in Southwest China,has multiple pharmacological activities,such as detoxification,antiinflammatory,... Our previous research studies have shown that Veratrilla baillonii Franch,a food supplement used by ethnic minorities in Southwest China,has multiple pharmacological activities,such as detoxification,antiinflammatory,antioxidant,and anti-insulin resistance.However,the detailed signal pathways for its salutary effect on damages in multiple organs due to type 2 diabetes mellitus(T2DM)remains unclear.The current study is to evaluate the therapeutic effects of V.baillonii on T2DM rats and to explore the underlying mechanisms.The T2DM rat model was successfully established by a high-sugar and high-fat diet(HFD)combination with intraperitoneal injection of a small dose of streptozotocin(STZ,35 mg/kg).Biochemical analysis and histopatholgical examinations were conducted to evaluate the anti-diabetic potential of water extracts of V.baillonii(WVBF).The results showed that the WVBF treatment can improve hyperglycemia and insulin resistance,ameliorate the liver,kidney and pancreas injuries via decreasing inflammatory cytokines such as IL-6 and TNF-α,and oxidative damages.Further investigation suggested that WVBF modulates the signal transductions of the IRS1/PI3K/AKT/GLUT4 and AMPK pathways.These findings demonstrate potentials of WVBF in the treatment of T2DM and possible mechanisms for its hepatoprotective activities. 展开更多
关键词 Veratrilla baillonii Franch Type 2 diabetes mellitus Liver injury skeletal muscle GLUT4
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部