A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These...A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.展开更多
We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we condu...We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we conducted simulations at medium sea.Results showed that the effects of deck motion on takeoff varied with initial phases,and airwake could help reducing aircraft′s sinkage.We also found that the deck motion played a major role in the effects caused by the interaction of deck motion and ship airwake.展开更多
This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off...This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.展开更多
文摘A general mathematical model of carrier-based aircraft ski jump take-off is derived based on tensor. The carrier, the aircraft body and the movable parts of the landing gears are treated as independent entities. These entities are assembled into a multi-rigid-body system with flexible links. Dynamical equations of each entity are derived on the basis of the Newton law and the Euler transformation. Using the invariance property of the tensor, the dynamical and kinematical equations are converted to tensor forms which are invariant under time-dependent coordinate transformations. Then the tensor-formed equations are expressed by the matrix operation. Differential equation group of the matrix form is formulated for the programming. The closure of the model is discussed, and the simulation results are given.
基金supported by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)
文摘We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we conducted simulations at medium sea.Results showed that the effects of deck motion on takeoff varied with initial phases,and airwake could help reducing aircraft′s sinkage.We also found that the deck motion played a major role in the effects caused by the interaction of deck motion and ship airwake.
基金Project supported by the National Natutal Science Foundation of China
文摘This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.