The curvature type of the thermal lens generated in a zigzag slab laser is numerically analysed. It is found that the curvature type of the thermal lens varies alternatively between the convex and the concave lenses w...The curvature type of the thermal lens generated in a zigzag slab laser is numerically analysed. It is found that the curvature type of the thermal lens varies alternatively between the convex and the concave lenses with the number of bounces of light within the slab, which can be well explained by the trace of the zigzag propagation. In addition, we conclude that the beamlet with a larger number of bounces experiences weaker thermal lensing but more serious wavefront deformation due to the large side lobe portion in the curve of optical path difference.展开更多
Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of ...Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.展开更多
A novel scheme of fully immersing water cooling is proposed for a Nd:glass radial slab laser. The slab medium is entirely immersed in the circulating water Ailing the pumping cavity, which enables much lower temperat...A novel scheme of fully immersing water cooling is proposed for a Nd:glass radial slab laser. The slab medium is entirely immersed in the circulating water Ailing the pumping cavity, which enables much lower temperature and reasonably smaller thermal gradient in the slab medium. The radial slab is symmetrically and synchronously pumped by eight flash lamps, and produces multi-output beams with a total energy of 469md. Incoherent beam combination property of the multi-output beams is also investigated. The approach suggested here provides a way of scaling the slab lasers to much higher output levels and also a convenience for beam combinations.展开更多
A high power Nd:YAG end-pumped slab amplifier chain with a Nd:YVO4 innoslab laser as the master oscillator is demonstrated. A chain output power of 5210 W with beam quality of 4 times the diffraction limit is achiev...A high power Nd:YAG end-pumped slab amplifier chain with a Nd:YVO4 innoslab laser as the master oscillator is demonstrated. A chain output power of 5210 W with beam quality of 4 times the diffraction limit is achieved by double-passing the first amplifier stage and single-passing the second stage with an optical efficiency of 29% while working at a frequency of 1kHz and pulse width of 200 μs.展开更多
We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd: Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG polycrystalline rod with Nd^3+...We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd: Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG polycrystalline rod with Nd^3+ concentration of 1 at. % as the gain medium, pumping with 808 nm laser-diode-arrays, the Q-switched laser output at 1064 nm wavelength with 23mJ pulse energy and less than 12ns FWHM pulse width are obtained at a pumping power of about 400 W, the slope efficiency is around 15%, the output beam divergence angle is about 1.2mrad.展开更多
A high-power CW Yb:YAG slab laser amplifier with no adaptive optics correction has been experimentally established.At room temperature,the amplifier emits a power of 22 kW with an average beam quality(β)of less than ...A high-power CW Yb:YAG slab laser amplifier with no adaptive optics correction has been experimentally established.At room temperature,the amplifier emits a power of 22 kW with an average beam quality(β)of less than 3 in 0.5 min.To our knowledge,this is the brightest slab laser without closed-loop adaptive optics demonstrated to date.In addition,an extracted power of 17 kW with an optical extraction efficiency of 33%,corresponding to a residual optical path difference of less than 0.5μm,is achieved with the single Yb:YAG slab gain module.The slab gain module has the potential to be scalable to higher powers while maintaining good beam quality.This makes a high-power solid-state laser system simpler and more robust.展开更多
We demonstrate a high-efficiency and high-power quasi-three-level laser based on a trapezoidal composite slab architecture with a 270 μm-thick Yb-doping surface. The design of a surface-doped slab architecture,temper...We demonstrate a high-efficiency and high-power quasi-three-level laser based on a trapezoidal composite slab architecture with a 270 μm-thick Yb-doping surface. The design of a surface-doped slab architecture,temperature effects, laser oscillator model, and laser oscillator experiments with a surface-doped slab as a laser host medium have been presented. By theoretical calculation, the temperature rise in the surface-doped slab is only one seventh of that in the bulk-doped slab at the same maximum pump power of 30 kW. Finally, in the laser oscillator experiments, an output energy of 21.6 J is obtained when the pump energy is 48 J with a repetition rate of 5 Hz and a pulse width of 1 ms. The optical-optical efficiency is 45%.展开更多
This paper reports the continuous wave (CW) and Q-switched operation of a diode pumped KGd (WO4): Nd (Nd:KGW) slab laser with a comer pumped geometry at the wavelength of 1067 nm. With an optical conversion ef...This paper reports the continuous wave (CW) and Q-switched operation of a diode pumped KGd (WO4): Nd (Nd:KGW) slab laser with a comer pumped geometry at the wavelength of 1067 nm. With an optical conversion efficiency of 38% and 34%, average powers of 23 and 20 W in CW and Q-switched modes were achieved respec- tively. The maximum pulse energy of 27 mJ was observed with a repetition rate of 840 Hz.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.50721004 and 60978032)
文摘The curvature type of the thermal lens generated in a zigzag slab laser is numerically analysed. It is found that the curvature type of the thermal lens varies alternatively between the convex and the concave lenses with the number of bounces of light within the slab, which can be well explained by the trace of the zigzag propagation. In addition, we conclude that the beamlet with a larger number of bounces experiences weaker thermal lensing but more serious wavefront deformation due to the large side lobe portion in the curve of optical path difference.
基金suported by the National Natural Science Foundation of China (Grant No. 10874242)the National Basic Research Program of China (973 Program) (Grant No. 2007CB815105)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070290008)
文摘Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.
基金Supported by the Major Innovation Program of Shandong Province under Grant No 2013CXA10006the National Natural Science Foundation of China under Grant No 61108008
文摘A novel scheme of fully immersing water cooling is proposed for a Nd:glass radial slab laser. The slab medium is entirely immersed in the circulating water Ailing the pumping cavity, which enables much lower temperature and reasonably smaller thermal gradient in the slab medium. The radial slab is symmetrically and synchronously pumped by eight flash lamps, and produces multi-output beams with a total energy of 469md. Incoherent beam combination property of the multi-output beams is also investigated. The approach suggested here provides a way of scaling the slab lasers to much higher output levels and also a convenience for beam combinations.
文摘A high power Nd:YAG end-pumped slab amplifier chain with a Nd:YVO4 innoslab laser as the master oscillator is demonstrated. A chain output power of 5210 W with beam quality of 4 times the diffraction limit is achieved by double-passing the first amplifier stage and single-passing the second stage with an optical efficiency of 29% while working at a frequency of 1kHz and pulse width of 200 μs.
文摘We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd: Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG polycrystalline rod with Nd^3+ concentration of 1 at. % as the gain medium, pumping with 808 nm laser-diode-arrays, the Q-switched laser output at 1064 nm wavelength with 23mJ pulse energy and less than 12ns FWHM pulse width are obtained at a pumping power of about 400 W, the slope efficiency is around 15%, the output beam divergence angle is about 1.2mrad.
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(No.U1830132)the National Natural Science Foundation of China(No.62105313)。
文摘A high-power CW Yb:YAG slab laser amplifier with no adaptive optics correction has been experimentally established.At room temperature,the amplifier emits a power of 22 kW with an average beam quality(β)of less than 3 in 0.5 min.To our knowledge,this is the brightest slab laser without closed-loop adaptive optics demonstrated to date.In addition,an extracted power of 17 kW with an optical extraction efficiency of 33%,corresponding to a residual optical path difference of less than 0.5μm,is achieved with the single Yb:YAG slab gain module.The slab gain module has the potential to be scalable to higher powers while maintaining good beam quality.This makes a high-power solid-state laser system simpler and more robust.
基金funded by the Science and Technology on Solid-State Laser Laboratory
文摘We demonstrate a high-efficiency and high-power quasi-three-level laser based on a trapezoidal composite slab architecture with a 270 μm-thick Yb-doping surface. The design of a surface-doped slab architecture,temperature effects, laser oscillator model, and laser oscillator experiments with a surface-doped slab as a laser host medium have been presented. By theoretical calculation, the temperature rise in the surface-doped slab is only one seventh of that in the bulk-doped slab at the same maximum pump power of 30 kW. Finally, in the laser oscillator experiments, an output energy of 21.6 J is obtained when the pump energy is 48 J with a repetition rate of 5 Hz and a pulse width of 1 ms. The optical-optical efficiency is 45%.
文摘This paper reports the continuous wave (CW) and Q-switched operation of a diode pumped KGd (WO4): Nd (Nd:KGW) slab laser with a comer pumped geometry at the wavelength of 1067 nm. With an optical conversion efficiency of 38% and 34%, average powers of 23 and 20 W in CW and Q-switched modes were achieved respec- tively. The maximum pulse energy of 27 mJ was observed with a repetition rate of 840 Hz.