New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks ...New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.展开更多
The Baingoin batholith is one of the largest granitic plutons in the North Lhasa terrane.Its petrogenesis and tectonic setting have been studied for decades,but remain controversial.Here we report data on geochronolog...The Baingoin batholith is one of the largest granitic plutons in the North Lhasa terrane.Its petrogenesis and tectonic setting have been studied for decades,but remain controversial.Here we report data on geochronology,geochemistry and isotopes of Early Cretaceous granitoids within the Baingoin batholith,which provide more evidence to uncover its petrogenesis and regional geodynamic processes.The Early Cretaceous magmatism yields ages of 134.4–132.0 Ma and can be divided into I-type,S-type and highly fractionated granites.The I-and S-type granites exhibit medium SiO2,high K_(2)O/Na_(2)O with negativeεNd(t)andεHf(t)values,whereas,the albite granites have very high SiO_(2)(79.04%–80.40%),very low K_(2)O/N_(2)O,negativeεNd(t)and a large variation inεHf(t).Our new data indicate that these granitoids are derived from unbalanced melting in a heterogeneous source area.The granodiorites involved had a hybrid origin from partial melting of basalt-derived and Al-rich rocks in the crust,the porphyritic monzogranites being derived from partial melting of pelitic rocks.The albite granites crystallized from residual melt separated from K-rich magma within the‘mush’process and underwent fractionation of K-feldspar.We believe that the Early Cretaceous magmatism formed in an extensional setting produced by the initial and continuous rollback of a northward-subducting slab of the NTO.展开更多
Anatolia is the global archetype of tectonic escape,as witnessed by the devastating 2023 Kahramanmaraş Earthquake sequence,and the 2020 Samos Earthquake,which show different kinematics related to the framework of the ...Anatolia is the global archetype of tectonic escape,as witnessed by the devastating 2023 Kahramanmaraş Earthquake sequence,and the 2020 Samos Earthquake,which show different kinematics related to the framework of the escape tectonics.Global Positioning System(GPS)motions of the wedge-shaped plate differ regionally from northwestwards to southwestwards(from east to west).Anatolia was extruded westward from the Arabian-Eurasian collision along the North and East Anatolian fault systems,rotating counterclockwise into the oceanic free-faces of the Mediterranean and Aegean,with dramatic extension of western Anatolia in traditional interpretations.However,which is the dominant mechanism for this change in kinematics,extrusion related to the Arabia/Eurasia collision or rollback of the African slab beneath western Anatolia is still unclear.To assess the dominant driving mechanisms across Anatolia,we analyze recent GPS velocity datasets,and decomposed them into N-S and E-W components,revealing that westward motion is essentially constant across the whole plate and consistent with the slip rates of the North and East Anatolia fault zones,while southward components increase dramatically in the transition area between central and western Anatolia,where a slab tear is suggested.This phenomenon is related to different tectonic driving mechanisms.The ArabiaEurasia collision drives the Anatolian Plate uniformly westwards while western Anatolia is progressively more affected by the southward retreating African subducting slab west of the Aegean/Cypriot slab tear,which significantly increases the southward component of the velocity field and causes the apparent curve of the whole modern velocity field.The 2020 and 2023 earthquake focal mechanisms also confirm that the northward colliding Arabian Plate forced Anatolia to the west,and the retreating African slab is pulling the upper plate of western Anatolian apart in extension.We propose that the Anatolian Plate is moving westwards as one plate with an additional component of extension in its west caused by the local driving mechanism,slab rollback(with the boundary above the slab tear around Isparta),rather than separate microplates or a near-pole spin of the entire Anatolian Plate,and the collisionrelated extrusion is the dominant mechanism of tectonic escape.展开更多
Late Paleozoic volcanic rocks are well exposed in the Yining Block,NW China,and are predominately composed of andesites,rhyolites and volcaniclastics as well as minor basalts.Study of the petrology,whole-rock geochemi...Late Paleozoic volcanic rocks are well exposed in the Yining Block,NW China,and are predominately composed of andesites,rhyolites and volcaniclastics as well as minor basalts.Study of the petrology,whole-rock geochemistry and zircon U-Pb dating for the Early Carboniferous alkaline basalts from Wusun Mountain,western Yining Block,constrains their petrogenesis and tectonic evolution.The alkaline basalts consist mainly of plagioclases,mostly albite and labradorite,as well as clinopyroxenes and olivines;zircon U-Pb dating indicates their formation at ca.350 Ma.Geochemically,the basaltic samples have low SiO_(2)contents,and high TiO_(2),Al_(2)O_(3)and alkaline contents,coupled with high Na_(2)O/K_(2)O ratios,displaying an alkaline basalt affinity.They show remarkable LILE enrichment and HFSE depletion.Meantime,these samples have relatively high TFe_(2)O_(3),MgO,and Mg#values as well as Ni and Cr,relatively high Sm/Yb and U/Th,suggesting origination from a mantle source metasomatized by slab fluids.They formed in a transitional tectonic setting from arc to intraplate,showing a typical affinity of back-arc basin basalts.The alkaline basalts were likely generated in a nascent back-arc extension setting resulting from slab rollback of the southern Tianshan oceanic lithosphere.A bidirectional subduction model seems more reasonable for the evolution of the southern Tianshan Ocean.These new data will provide a new tectonic model for Late Paleozoic tectonic evolution of the western Yining Block.展开更多
The latest Cretaceous magmatic activity in the eastern segment of the Lhasa terrane provides important insights for tracking the magma source and geodynamic setting of the eastern Gangdese batholith,eastward of easter...The latest Cretaceous magmatic activity in the eastern segment of the Lhasa terrane provides important insights for tracking the magma source and geodynamic setting of the eastern Gangdese batholith,eastward of eastern Himalayan Syntaxis.Detailed petrological,geochemical and geochronological studies of the intrusive rocks(monzodiorites and granodiorites)of the eastern Gangdese batholith are presented with monzodiorites and granodiorites giving zircon U-Pb crystallization dates of 70-66 Ma and 71-66 Ma withεHf(t)values of−4.8 to+6.2 and−1.9 to+5.3,respectively.These rocks are metaluminous to weakly peraluminous I-type granites showing geochemically arc-related features of enrichment in LREEs and some LILEs,e.g.,Rb,Th,and U,and depletion in HREEs and some HFSEs,e.g.,Nb,Ta,and Ti.The rocks are interpreted to be derived from partial melting of mantle material and juvenile crust,respectively,which are proposed to be triggered by Neo-Tethyan slab rollback during northward subduction,with both experiencing ancient crustal contamination.The studied intrusive rocks formed in a transitional geodynamic setting caused by Neo-Tethyan oceanic flat subduction to slab rollback beneath the eastern Gangdese belt during the latest Cretaceous.展开更多
Neotethyan ophiolites evolved in multiple seaways separated by Gondwana–derived ribbon continents within an eastward widening, latitudinal oceanic realm(Neotethys) throughout the Mesozoic. Opening and closure of thes...Neotethyan ophiolites evolved in multiple seaways separated by Gondwana–derived ribbon continents within an eastward widening, latitudinal oceanic realm(Neotethys) throughout the Mesozoic. Opening and closure of these seaways were diachronous events, resulting in E–W variations in the timing of oceanic crust production and ophiolite emplacement. The Neotethyan ophiolites are highly diverse in their crustal–mantle structures and compositions, isotopic fingerprints, and sedimentary cover types, pointing to major differences in their mantle melt sources and tectonic and paleogeographic settings of magmatic construction(Dilek and Furnes, 2019). The Jurassic Western Alpine and Ligurian ophiolites in Europe and their counterparts in southern and northern Iberia formed in a narrow basin(Western Tethys) that developed between Europe and North Africa–Adria–Iberia. Their peridotites represent exhumed, continental lithospheric mantle, and the ophiolites display a Hess–type oceanic crustal architecture with MORB geochemical signatures(Dilek and Furnes, 2011). All these ophiolites were incorporated into continental margins from the downgoing oceanic lithosphere of the Western Tethys. Triassic, Jurassic and Cretaceous ophiolites east of Adria formed in different Neotethyan seaways(Dilek et al., 1990), and their rift–drift, seafloor spreading and suprasubduction zone(SSZ) magmatic construction involved multiple episodes of melting, depletion and refertilization of previously or actively subduction metasomatized mantle sources. Deep mantle recycling processes through subduction zone tectonics and/or plume activities played a major role in their melt evolution, and in the incorporation of mantle transition zone(MTZ) materials into their peridotites(Fig. 1;Dilek and Yang, 2018;Xiong et al., 2019). Tectonic mélanges structurally beneath these ophiolites include Permo–Triassic, OIB–type extrusive rocks, indicating that the initial dismantling of the Pangea supercontinent that led to the opening of the Triassic and Jurassic ocean basins within the Neotethyan realm was associated with plume magmatism(Dilek, 2003 a;Yang and Dilek, 2015). This plume signature is absent in the Permo–Triassic magmatic record of the Western Tethys to the west. The Cretaceous ophiolites around the Arabia(Dilek et al., 1990;Dilek and Delaloye, 1992;Dilek and Eddy,1992) and India sub-continents(Fareeduddin and Dilek, 2015) occur discontinuously along a ~9000-km-long belt from SW Anatolia to SE Tibet and Indo-China. The majority of these ophiolites have a Penrose–type oceanic crustal architecture(Dilek, 2003 b) and display SSZ geochemical affinities, complete with a MORB–IAT–BON progression of their chemo-stratigraphy(Fig. 1;Dilek and Thy, 1998;Dilek et al., 1999;Dilek and Furnes, 2014;Saccani et al., 2018). They evolved above a N–dipping, Trans–Tethyan subduction–accretion system that was situated in sub-tropical latitudes within the Neotethyan realm. The Trans–Tethyan subduction–accretion system was segmented into two major domains(Western and Eastern domains) by the NNE–SSW–oriented, sinistral Chaman–Omach–Nal transform fault plate boundary. This Cretaceous intraoceanic arc–trench system was analogous to the modern Izu–Bonin–Mariana(IBM) and Tonga arc–trench systems in the western Pacific in terms of its size. Diachronous collisions of the Arabia and India sub-continents with this segmented Trans-Tethyan arc–trench system resulted in the southward emplacement of the SSZ Neotethyan ophiolites onto their passive margins in the latest Mesozoic(Dilek and Furnes, 2019). A separate N–dipping subduction system, dipping beneath Eurasia to the north during much of the Jurassic and Cretaceous, was consuming the Neotethyan oceanic lithosphere and was responsible for the construction of a composite magmatic arc belt extending discontinuously from Southern Tibet to Northern Iran. Slab rollback along this northern subduction system produced locally developed forearc–backarc oceanic lithosphere that was subsequently collapsed into the southern margin of Eurasia. The existence of these two contemporaneous, Ndipping subduction systems within Neotethys led to its rapid contraction and the fast convergence of India towards Eurasia during the late Mesozoic–early Cenozoic(Dilek and Furnes, 2019). It was the collision with Eurasia of the India sub-continent with the accreted ophiolites around its periphery in the Late Paleogene that produced the Himalayan orogeny.展开更多
Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental fac...Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental factors in the Barisan Mountains remain a primary obstacle to the exploration and exploitation of geothermal energy.The back-arc basins of Sumatra exhibit the highest heat flow worldwide;however,the heat source in this area remains a controversial issue.This study aims to investigate the origin of the high heat flow in the back-arc basins of Sumatra(North,Central,and South Sumatra basins)based on geothermal data from 384 oil wells and the current literature for geological evaluation.The findings of this study indicate that the back-arc basins of Sumatra experienced severe extensional deformation during the Tertiary Period through a large pull-apart and slab rollback mechanism.This deformation resulted in the thinning of the continental crust in this region(27-32 km)and the formation of multiple normal faults.Consequently,the presence of magma resulting from mantle upwelling implies a high heat flow in the back-arc basins of Sumatra.This condition ranks the back-arc basins of Sumatra among the highest heat flow regions of the world,with heat flows>100 mW/m^(2).These findings indicate that the back-arc basins of Sumatra have significant opportunities to exploit their geothermal energy potential.This study provides novel insights into the potential of geothermal energy,particularly in the back-arc basins of Sumatra.展开更多
About 45%of tungsten,~20%of tin,and~9%of fluorite of known world reserves are associated with Late Mesozoic igneous rocks,Southeast(SE)China.Here we demonstrate that Fogang granite,the largest inland batholith,is main...About 45%of tungsten,~20%of tin,and~9%of fluorite of known world reserves are associated with Late Mesozoic igneous rocks,Southeast(SE)China.Here we demonstrate that Fogang granite,the largest inland batholith,is mainly of A2-type that is commonly found in post-orogenic settings and experienced plate subduction induced metasomatism.In contrast,the Yajishan syenite and Nankunshan granite intruding the Fogang granite~20 Ma later are of A1-type formed in intraplate settings.We found that F-rich fluid fractionation,which could make the decline of Ga/Al ratio,total(Nb+Y+Ce+Zr)and Zr concentrations,Nb/Ta and Zr/Hf ratios,leads to chemical variations of a few Fogang granites changing from A2-type to highly fractionated or I-and S-type granitoids.Crystal and Frich fluid fractionations,as well as crustal contamination most likely derived from the Fogang granite,result in some Nankunshan granites developing from A1-type into A2-type.These late-or post-magmatic processes should be taken into account carefully when discriminating the petrogenetic types of igneous rocks,especially for the A2-type suites.Combining with the distribution of 180-140 Ma A1-and A2-type igneous rocks,rare metal deposits,and fluorite deposits in SE China,we highlight the significant role of slab-released F-rich fluids in formation of A-type suites and subsequent chemical differentiation and rare metal and fluorine mineralization.A model of flat-slab northeastward rollback is thus proposed,in which the subduction front reached somewhere near Fogang and then started to roll back at~165 Ma.The inland Jurassic granites of SE China represent a unique locality for formation of A-type suites and their associated mineralization.These granites are not anorogenic,but they are the result of slab rollback from a flat slab,founding of that slab at shallow levels,and metasomatism of by F-rich fluids related to slab heating by the asthenosphere.展开更多
Eight Mesozoic sub-volcanic and intrusive rocks in the Lishui Basin have been selected for zircon U-Pb dating and Lu-Hf isotopic analysis. The Laohutou, Datongshan,Daweizhuang, Yeshanao, Yanwaqiao, Xibeishan, Changsha...Eight Mesozoic sub-volcanic and intrusive rocks in the Lishui Basin have been selected for zircon U-Pb dating and Lu-Hf isotopic analysis. The Laohutou, Datongshan,Daweizhuang, Yeshanao, Yanwaqiao, Xibeishan, Changshantou and Jianshan porphyrites yield concordant early Cretaceous ages of 130.5 ± 1.6 Ma, 136.0 ± 3.4 Ma, 132.7 ±2.7 Ma, 127.0 ± 1.9 Ma, 129.4 ± 1.7 Ma, 133.2 ± 2.1 Ma,131.1 ± 2.3 Ma and 127.4 ± 1.8 Ma, respectively. Zircon eHf(t) values for these rocks range from-3.54 to-9.11, mostly between-3.54 and-5.93, suggesting sources similar to those for coeval igneous rocks in other volcanic basins along the middle and lower reaches of Yangtze River. Considering the geochemical characteristics of coeval magmatic rocks in the middle and lower reaches of Yangtze River and its adjacent areas, this paper proposes a model of slab rollback to explain the Mesozoic magmatism in the east-central part of China continent. In the middle-late Jurassic to early Cretaceous(170–135 Ma), the Pacific plate started to subduct beneath the Eurasian continent, producing a compressive tectonic setting,and magmatism progressed from coast to the inland. The magmas of this period were derived mostly from partial melting of ancient crust. After *135 Ma, the subduction weakened, and the rollback of the subducted Pacific plate produced an extensional environment. This led to the formation of volcanic basins, the partial melting of enriched mantle sources and less ancient crust, and the intrusion of voluminous intermediate-mafic igneous rocks.展开更多
Compositional changes in successively erupted felsic rocks can be used to infer physical changes in lower crustal conditions and to enhance the understanding of the tectonic regime.This study presents geochronological...Compositional changes in successively erupted felsic rocks can be used to infer physical changes in lower crustal conditions and to enhance the understanding of the tectonic regime.This study presents geochronological,geochemical and isotopic data for two I-type granitic plutons in the Sonid Left Banner of the Central Asian Orogenic Belt.Our new data,together with compiled I-type granitoid data,reveal the presence of magma compositional transition at~305 Ma in the Baolidao arc-accretion belt.The early stage granitoids(330-305 Ma)are medium-K calc-alkaline with higher Sr/Y ratios.The late stage granitoids(305-270 Ma)are high-K calc-alkaline with lower Sr/Y ratios.The two-stage granitoids have roughly similar predominately positive Sr-Nd-Hf isotope values,but with a decreasing trend from the early to late stages.Geochemical data indicate that the early stage granitoids were generated by dehydration melting of juvenile mafic crust at amphibole-dominated depths.In contrast,the late stage granitoids were produced by dehydration melting of a mixed lithology containing juvenile K-rich mafic lower crust and supracrustal materials at the plagioclase-stable crustal level.We propose that the compositional transition of these granitoids can be linked with different slab behaviors of the northward subducting Paleo-Asian oceanic plate,and also with the back-arc tectonic settings.展开更多
基金support from the University of the PhilippinesNational Institute of Geological Sciencesfinancial support from the Department of Science and Technology through the years
文摘New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.
基金supported by grants from the National Key R&D Program of China(Nos.2022YFC2905001,2018YFC0604106 and 2018YFC0604101)the Program of the Chinese Geological Survey(Nos.DD20190167 and DD20221684)+1 种基金the Basic Research Fund of the Institute of Mineral Resources,Chinese Academy of Geological Sciences(Nos.SYSCR2019-03 and KK2017)the National Natural Science Foundation of China(No.41902097).
文摘The Baingoin batholith is one of the largest granitic plutons in the North Lhasa terrane.Its petrogenesis and tectonic setting have been studied for decades,but remain controversial.Here we report data on geochronology,geochemistry and isotopes of Early Cretaceous granitoids within the Baingoin batholith,which provide more evidence to uncover its petrogenesis and regional geodynamic processes.The Early Cretaceous magmatism yields ages of 134.4–132.0 Ma and can be divided into I-type,S-type and highly fractionated granites.The I-and S-type granites exhibit medium SiO2,high K_(2)O/Na_(2)O with negativeεNd(t)andεHf(t)values,whereas,the albite granites have very high SiO_(2)(79.04%–80.40%),very low K_(2)O/N_(2)O,negativeεNd(t)and a large variation inεHf(t).Our new data indicate that these granitoids are derived from unbalanced melting in a heterogeneous source area.The granodiorites involved had a hybrid origin from partial melting of basalt-derived and Al-rich rocks in the crust,the porphyritic monzogranites being derived from partial melting of pelitic rocks.The albite granites crystallized from residual melt separated from K-rich magma within the‘mush’process and underwent fractionation of K-feldspar.We believe that the Early Cretaceous magmatism formed in an extensional setting produced by the initial and continuous rollback of a northward-subducting slab of the NTO.
基金funded by the National Natural Science Foundation of China (Nos. 91755213 and 41888101)the Chinese Scholarship Council
文摘Anatolia is the global archetype of tectonic escape,as witnessed by the devastating 2023 Kahramanmaraş Earthquake sequence,and the 2020 Samos Earthquake,which show different kinematics related to the framework of the escape tectonics.Global Positioning System(GPS)motions of the wedge-shaped plate differ regionally from northwestwards to southwestwards(from east to west).Anatolia was extruded westward from the Arabian-Eurasian collision along the North and East Anatolian fault systems,rotating counterclockwise into the oceanic free-faces of the Mediterranean and Aegean,with dramatic extension of western Anatolia in traditional interpretations.However,which is the dominant mechanism for this change in kinematics,extrusion related to the Arabia/Eurasia collision or rollback of the African slab beneath western Anatolia is still unclear.To assess the dominant driving mechanisms across Anatolia,we analyze recent GPS velocity datasets,and decomposed them into N-S and E-W components,revealing that westward motion is essentially constant across the whole plate and consistent with the slip rates of the North and East Anatolia fault zones,while southward components increase dramatically in the transition area between central and western Anatolia,where a slab tear is suggested.This phenomenon is related to different tectonic driving mechanisms.The ArabiaEurasia collision drives the Anatolian Plate uniformly westwards while western Anatolia is progressively more affected by the southward retreating African subducting slab west of the Aegean/Cypriot slab tear,which significantly increases the southward component of the velocity field and causes the apparent curve of the whole modern velocity field.The 2020 and 2023 earthquake focal mechanisms also confirm that the northward colliding Arabian Plate forced Anatolia to the west,and the retreating African slab is pulling the upper plate of western Anatolian apart in extension.We propose that the Anatolian Plate is moving westwards as one plate with an additional component of extension in its west caused by the local driving mechanism,slab rollback(with the boundary above the slab tear around Isparta),rather than separate microplates or a near-pole spin of the entire Anatolian Plate,and the collisionrelated extrusion is the dominant mechanism of tectonic escape.
基金financially supported by the Fundamental Research Funds for the Central Universities,CHD(Grant Nos.300102271403,300102261401 and 300102261403)the National Natural Science Foundation of China(Grant No.41672285)。
文摘Late Paleozoic volcanic rocks are well exposed in the Yining Block,NW China,and are predominately composed of andesites,rhyolites and volcaniclastics as well as minor basalts.Study of the petrology,whole-rock geochemistry and zircon U-Pb dating for the Early Carboniferous alkaline basalts from Wusun Mountain,western Yining Block,constrains their petrogenesis and tectonic evolution.The alkaline basalts consist mainly of plagioclases,mostly albite and labradorite,as well as clinopyroxenes and olivines;zircon U-Pb dating indicates their formation at ca.350 Ma.Geochemically,the basaltic samples have low SiO_(2)contents,and high TiO_(2),Al_(2)O_(3)and alkaline contents,coupled with high Na_(2)O/K_(2)O ratios,displaying an alkaline basalt affinity.They show remarkable LILE enrichment and HFSE depletion.Meantime,these samples have relatively high TFe_(2)O_(3),MgO,and Mg#values as well as Ni and Cr,relatively high Sm/Yb and U/Th,suggesting origination from a mantle source metasomatized by slab fluids.They formed in a transitional tectonic setting from arc to intraplate,showing a typical affinity of back-arc basin basalts.The alkaline basalts were likely generated in a nascent back-arc extension setting resulting from slab rollback of the southern Tianshan oceanic lithosphere.A bidirectional subduction model seems more reasonable for the evolution of the southern Tianshan Ocean.These new data will provide a new tectonic model for Late Paleozoic tectonic evolution of the western Yining Block.
基金This study is co-supported by the National Key Research and Development Project of China(Grant Nos.2018YFC0603700,2016YFC0600310)the China Geological Survey(Grant No.DD20190011)the National Natural Science Foundation of China(Grant Nos.91855210,41872029,41202035。
文摘The latest Cretaceous magmatic activity in the eastern segment of the Lhasa terrane provides important insights for tracking the magma source and geodynamic setting of the eastern Gangdese batholith,eastward of eastern Himalayan Syntaxis.Detailed petrological,geochemical and geochronological studies of the intrusive rocks(monzodiorites and granodiorites)of the eastern Gangdese batholith are presented with monzodiorites and granodiorites giving zircon U-Pb crystallization dates of 70-66 Ma and 71-66 Ma withεHf(t)values of−4.8 to+6.2 and−1.9 to+5.3,respectively.These rocks are metaluminous to weakly peraluminous I-type granites showing geochemically arc-related features of enrichment in LREEs and some LILEs,e.g.,Rb,Th,and U,and depletion in HREEs and some HFSEs,e.g.,Nb,Ta,and Ti.The rocks are interpreted to be derived from partial melting of mantle material and juvenile crust,respectively,which are proposed to be triggered by Neo-Tethyan slab rollback during northward subduction,with both experiencing ancient crustal contamination.The studied intrusive rocks formed in a transitional geodynamic setting caused by Neo-Tethyan oceanic flat subduction to slab rollback beneath the eastern Gangdese belt during the latest Cretaceous.
文摘Neotethyan ophiolites evolved in multiple seaways separated by Gondwana–derived ribbon continents within an eastward widening, latitudinal oceanic realm(Neotethys) throughout the Mesozoic. Opening and closure of these seaways were diachronous events, resulting in E–W variations in the timing of oceanic crust production and ophiolite emplacement. The Neotethyan ophiolites are highly diverse in their crustal–mantle structures and compositions, isotopic fingerprints, and sedimentary cover types, pointing to major differences in their mantle melt sources and tectonic and paleogeographic settings of magmatic construction(Dilek and Furnes, 2019). The Jurassic Western Alpine and Ligurian ophiolites in Europe and their counterparts in southern and northern Iberia formed in a narrow basin(Western Tethys) that developed between Europe and North Africa–Adria–Iberia. Their peridotites represent exhumed, continental lithospheric mantle, and the ophiolites display a Hess–type oceanic crustal architecture with MORB geochemical signatures(Dilek and Furnes, 2011). All these ophiolites were incorporated into continental margins from the downgoing oceanic lithosphere of the Western Tethys. Triassic, Jurassic and Cretaceous ophiolites east of Adria formed in different Neotethyan seaways(Dilek et al., 1990), and their rift–drift, seafloor spreading and suprasubduction zone(SSZ) magmatic construction involved multiple episodes of melting, depletion and refertilization of previously or actively subduction metasomatized mantle sources. Deep mantle recycling processes through subduction zone tectonics and/or plume activities played a major role in their melt evolution, and in the incorporation of mantle transition zone(MTZ) materials into their peridotites(Fig. 1;Dilek and Yang, 2018;Xiong et al., 2019). Tectonic mélanges structurally beneath these ophiolites include Permo–Triassic, OIB–type extrusive rocks, indicating that the initial dismantling of the Pangea supercontinent that led to the opening of the Triassic and Jurassic ocean basins within the Neotethyan realm was associated with plume magmatism(Dilek, 2003 a;Yang and Dilek, 2015). This plume signature is absent in the Permo–Triassic magmatic record of the Western Tethys to the west. The Cretaceous ophiolites around the Arabia(Dilek et al., 1990;Dilek and Delaloye, 1992;Dilek and Eddy,1992) and India sub-continents(Fareeduddin and Dilek, 2015) occur discontinuously along a ~9000-km-long belt from SW Anatolia to SE Tibet and Indo-China. The majority of these ophiolites have a Penrose–type oceanic crustal architecture(Dilek, 2003 b) and display SSZ geochemical affinities, complete with a MORB–IAT–BON progression of their chemo-stratigraphy(Fig. 1;Dilek and Thy, 1998;Dilek et al., 1999;Dilek and Furnes, 2014;Saccani et al., 2018). They evolved above a N–dipping, Trans–Tethyan subduction–accretion system that was situated in sub-tropical latitudes within the Neotethyan realm. The Trans–Tethyan subduction–accretion system was segmented into two major domains(Western and Eastern domains) by the NNE–SSW–oriented, sinistral Chaman–Omach–Nal transform fault plate boundary. This Cretaceous intraoceanic arc–trench system was analogous to the modern Izu–Bonin–Mariana(IBM) and Tonga arc–trench systems in the western Pacific in terms of its size. Diachronous collisions of the Arabia and India sub-continents with this segmented Trans-Tethyan arc–trench system resulted in the southward emplacement of the SSZ Neotethyan ophiolites onto their passive margins in the latest Mesozoic(Dilek and Furnes, 2019). A separate N–dipping subduction system, dipping beneath Eurasia to the north during much of the Jurassic and Cretaceous, was consuming the Neotethyan oceanic lithosphere and was responsible for the construction of a composite magmatic arc belt extending discontinuously from Southern Tibet to Northern Iran. Slab rollback along this northern subduction system produced locally developed forearc–backarc oceanic lithosphere that was subsequently collapsed into the southern margin of Eurasia. The existence of these two contemporaneous, Ndipping subduction systems within Neotethys led to its rapid contraction and the fast convergence of India towards Eurasia during the late Mesozoic–early Cenozoic(Dilek and Furnes, 2019). It was the collision with Eurasia of the India sub-continent with the accreted ophiolites around its periphery in the Late Paleogene that produced the Himalayan orogeny.
文摘Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental factors in the Barisan Mountains remain a primary obstacle to the exploration and exploitation of geothermal energy.The back-arc basins of Sumatra exhibit the highest heat flow worldwide;however,the heat source in this area remains a controversial issue.This study aims to investigate the origin of the high heat flow in the back-arc basins of Sumatra(North,Central,and South Sumatra basins)based on geothermal data from 384 oil wells and the current literature for geological evaluation.The findings of this study indicate that the back-arc basins of Sumatra experienced severe extensional deformation during the Tertiary Period through a large pull-apart and slab rollback mechanism.This deformation resulted in the thinning of the continental crust in this region(27-32 km)and the formation of multiple normal faults.Consequently,the presence of magma resulting from mantle upwelling implies a high heat flow in the back-arc basins of Sumatra.This condition ranks the back-arc basins of Sumatra among the highest heat flow regions of the world,with heat flows>100 mW/m^(2).These findings indicate that the back-arc basins of Sumatra have significant opportunities to exploit their geothermal energy potential.This study provides novel insights into the potential of geothermal energy,particularly in the back-arc basins of Sumatra.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302013)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB42000000)+1 种基金the National Natural Science Foundation of China(No.41773054)the National Key R&D Program of China(No.2016YFC0600408)。
文摘About 45%of tungsten,~20%of tin,and~9%of fluorite of known world reserves are associated with Late Mesozoic igneous rocks,Southeast(SE)China.Here we demonstrate that Fogang granite,the largest inland batholith,is mainly of A2-type that is commonly found in post-orogenic settings and experienced plate subduction induced metasomatism.In contrast,the Yajishan syenite and Nankunshan granite intruding the Fogang granite~20 Ma later are of A1-type formed in intraplate settings.We found that F-rich fluid fractionation,which could make the decline of Ga/Al ratio,total(Nb+Y+Ce+Zr)and Zr concentrations,Nb/Ta and Zr/Hf ratios,leads to chemical variations of a few Fogang granites changing from A2-type to highly fractionated or I-and S-type granitoids.Crystal and Frich fluid fractionations,as well as crustal contamination most likely derived from the Fogang granite,result in some Nankunshan granites developing from A1-type into A2-type.These late-or post-magmatic processes should be taken into account carefully when discriminating the petrogenetic types of igneous rocks,especially for the A2-type suites.Combining with the distribution of 180-140 Ma A1-and A2-type igneous rocks,rare metal deposits,and fluorite deposits in SE China,we highlight the significant role of slab-released F-rich fluids in formation of A-type suites and subsequent chemical differentiation and rare metal and fluorine mineralization.A model of flat-slab northeastward rollback is thus proposed,in which the subduction front reached somewhere near Fogang and then started to roll back at~165 Ma.The inland Jurassic granites of SE China represent a unique locality for formation of A-type suites and their associated mineralization.These granites are not anorogenic,but they are the result of slab rollback from a flat slab,founding of that slab at shallow levels,and metasomatism of by F-rich fluids related to slab heating by the asthenosphere.
基金supported by National Natural Science Foundation of China (41102123, 41330208)a Grant (1212011120864) from China Geological Survey
文摘Eight Mesozoic sub-volcanic and intrusive rocks in the Lishui Basin have been selected for zircon U-Pb dating and Lu-Hf isotopic analysis. The Laohutou, Datongshan,Daweizhuang, Yeshanao, Yanwaqiao, Xibeishan, Changshantou and Jianshan porphyrites yield concordant early Cretaceous ages of 130.5 ± 1.6 Ma, 136.0 ± 3.4 Ma, 132.7 ±2.7 Ma, 127.0 ± 1.9 Ma, 129.4 ± 1.7 Ma, 133.2 ± 2.1 Ma,131.1 ± 2.3 Ma and 127.4 ± 1.8 Ma, respectively. Zircon eHf(t) values for these rocks range from-3.54 to-9.11, mostly between-3.54 and-5.93, suggesting sources similar to those for coeval igneous rocks in other volcanic basins along the middle and lower reaches of Yangtze River. Considering the geochemical characteristics of coeval magmatic rocks in the middle and lower reaches of Yangtze River and its adjacent areas, this paper proposes a model of slab rollback to explain the Mesozoic magmatism in the east-central part of China continent. In the middle-late Jurassic to early Cretaceous(170–135 Ma), the Pacific plate started to subduct beneath the Eurasian continent, producing a compressive tectonic setting,and magmatism progressed from coast to the inland. The magmas of this period were derived mostly from partial melting of ancient crust. After *135 Ma, the subduction weakened, and the rollback of the subducted Pacific plate produced an extensional environment. This led to the formation of volcanic basins, the partial melting of enriched mantle sources and less ancient crust, and the intrusion of voluminous intermediate-mafic igneous rocks.
基金supported by the National Natural Science Foundation of China(No.91962104)the Geological Survey Project from the Ministry of Science and Technology,China(No.1212011120326)。
文摘Compositional changes in successively erupted felsic rocks can be used to infer physical changes in lower crustal conditions and to enhance the understanding of the tectonic regime.This study presents geochronological,geochemical and isotopic data for two I-type granitic plutons in the Sonid Left Banner of the Central Asian Orogenic Belt.Our new data,together with compiled I-type granitoid data,reveal the presence of magma compositional transition at~305 Ma in the Baolidao arc-accretion belt.The early stage granitoids(330-305 Ma)are medium-K calc-alkaline with higher Sr/Y ratios.The late stage granitoids(305-270 Ma)are high-K calc-alkaline with lower Sr/Y ratios.The two-stage granitoids have roughly similar predominately positive Sr-Nd-Hf isotope values,but with a decreasing trend from the early to late stages.Geochemical data indicate that the early stage granitoids were generated by dehydration melting of juvenile mafic crust at amphibole-dominated depths.In contrast,the late stage granitoids were produced by dehydration melting of a mixed lithology containing juvenile K-rich mafic lower crust and supracrustal materials at the plagioclase-stable crustal level.We propose that the compositional transition of these granitoids can be linked with different slab behaviors of the northward subducting Paleo-Asian oceanic plate,and also with the back-arc tectonic settings.