选用不同类型的等离子体薄靶,用二维particle-in-cell(PIC)粒子模拟方法系统研究了超强激光脉冲与等离子体薄靶相互作用中产生的自生磁场和质子加速行为,结果发现:当功率密度为1020W/cm2的超强激光与等离子体薄靶相互作用时,由于等离子...选用不同类型的等离子体薄靶,用二维particle-in-cell(PIC)粒子模拟方法系统研究了超强激光脉冲与等离子体薄靶相互作用中产生的自生磁场和质子加速行为,结果发现:当功率密度为1020W/cm2的超强激光与等离子体薄靶相互作用时,由于等离子靶面所产生的自生磁场作用使产生的质子分布呈现空间定向发射,发射的方向和高能质子能量与等离子体靶面密切相关,能量越高发散角越小,而质子加速越好。在圆形薄靶中质子最大能量达到41.1 Me V。研究结果对惯性纳米聚变快点火和肿瘤治疗等方面具有重要的应用价值。展开更多
文摘选用不同类型的等离子体薄靶,用二维particle-in-cell(PIC)粒子模拟方法系统研究了超强激光脉冲与等离子体薄靶相互作用中产生的自生磁场和质子加速行为,结果发现:当功率密度为1020W/cm2的超强激光与等离子体薄靶相互作用时,由于等离子靶面所产生的自生磁场作用使产生的质子分布呈现空间定向发射,发射的方向和高能质子能量与等离子体靶面密切相关,能量越高发散角越小,而质子加速越好。在圆形薄靶中质子最大能量达到41.1 Me V。研究结果对惯性纳米聚变快点火和肿瘤治疗等方面具有重要的应用价值。