The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
An optimal allocation of earth is of great significance to reduce the project cost and duration in the construction of rock-fill dams. The earth allocation is a dynamic system affected by various time-space constraint...An optimal allocation of earth is of great significance to reduce the project cost and duration in the construction of rock-fill dams. The earth allocation is a dynamic system affected by various time-space constraints. Based on previous studies, a new method of optimizing this dynamic system as a static one is presented. In order to build a generalized and flexible model of the problem, some man-made constraints were investigated in building the mathematic model. Linear programming and simplex method are introduced to solve the optimization problem of earth allocation. A case study in a large-scale rock-fill dam construction project is presented to demonstrate the proposed method and its successful application shows the feasibility and effectiveness of the method.展开更多
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of...This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.展开更多
The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the...The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.展开更多
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(...Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.展开更多
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation n...Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.展开更多
This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete ...This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete faced rock-fill dams. This paper has raised the key technical problems which need to study for construction of 300 m-height-scale concrete faced rock-fill dams based on the main experiences on the extra-high concrete faced rock-fill dams built after the year of 2000.展开更多
This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.La...This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction.During the construction the properties of the available rock-fill changed from solid to soft materials.This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder.Several times higher dam settlements as well as significant differential settlements between the up-and downstream dam shell were observed during construction and operation.Apart from this situation,the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.展开更多
For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but n...For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but non-Darcy flow. For the analysis of the flow characters, using the energy theory and the FEM, the author presents a method to calculate the combined flow (i. e. flow over and through a dam ) in this paper. The experimental work shows that, the calculated results agree well with the experimental ones.Therefore, it is not only possible, but also feasible to solve this problem with the presented method.展开更多
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
文摘An optimal allocation of earth is of great significance to reduce the project cost and duration in the construction of rock-fill dams. The earth allocation is a dynamic system affected by various time-space constraints. Based on previous studies, a new method of optimizing this dynamic system as a static one is presented. In order to build a generalized and flexible model of the problem, some man-made constraints were investigated in building the mathematic model. Linear programming and simplex method are introduced to solve the optimization problem of earth allocation. A case study in a large-scale rock-fill dam construction project is presented to demonstrate the proposed method and its successful application shows the feasibility and effectiveness of the method.
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.
文摘This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.
文摘The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.
基金the support from the Key Program Grant from National Natural Science Foundation of China (52039005)Grant from State Key Laboratory of Hydroscience and Engineering (2022-KY-01).
文摘Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.
基金supported by the National Natural Science Foundation of China(Grant Nos.51579086,51479054,51379068&51139001)Jiangsu Natural Science Foundation(Grant No.BK20140039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.YS11001)
文摘Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.
文摘This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete faced rock-fill dams. This paper has raised the key technical problems which need to study for construction of 300 m-height-scale concrete faced rock-fill dams based on the main experiences on the extra-high concrete faced rock-fill dams built after the year of 2000.
文摘This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction.During the construction the properties of the available rock-fill changed from solid to soft materials.This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder.Several times higher dam settlements as well as significant differential settlements between the up-and downstream dam shell were observed during construction and operation.Apart from this situation,the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.
文摘For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but non-Darcy flow. For the analysis of the flow characters, using the energy theory and the FEM, the author presents a method to calculate the combined flow (i. e. flow over and through a dam ) in this paper. The experimental work shows that, the calculated results agree well with the experimental ones.Therefore, it is not only possible, but also feasible to solve this problem with the presented method.