In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through...In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.展开更多
Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular ...Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.展开更多
对比分析了三种类型结晶器渣圈,阐明了渣圈对连铸坯生产过程的影响。结果表明,当渣圈存在时,渣道动态压力变化幅度显著增大,最大正压由1.373 k Pa提高到21 k Pa,压力增大导致振痕产生,渣圈越厚,振痕越深;同时,渣圈会影响保护渣的消耗量...对比分析了三种类型结晶器渣圈,阐明了渣圈对连铸坯生产过程的影响。结果表明,当渣圈存在时,渣道动态压力变化幅度显著增大,最大正压由1.373 k Pa提高到21 k Pa,压力增大导致振痕产生,渣圈越厚,振痕越深;同时,渣圈会影响保护渣的消耗量,无渣圈时,最大渣耗量为0.009 7 kg/(m·s),渣圈存在时,最大渣耗量降至0.007 kg/(m·s),较厚的渣圈会使渣道宽度变窄,在振动负滑脱中期降低保护渣的消耗量。展开更多
文摘In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.
文摘Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.
文摘对比分析了三种类型结晶器渣圈,阐明了渣圈对连铸坯生产过程的影响。结果表明,当渣圈存在时,渣道动态压力变化幅度显著增大,最大正压由1.373 k Pa提高到21 k Pa,压力增大导致振痕产生,渣圈越厚,振痕越深;同时,渣圈会影响保护渣的消耗量,无渣圈时,最大渣耗量为0.009 7 kg/(m·s),渣圈存在时,最大渣耗量降至0.007 kg/(m·s),较厚的渣圈会使渣道宽度变窄,在振动负滑脱中期降低保护渣的消耗量。