Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fif...Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fifth order Stokes wave and stream function wave by using Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives wind-driven slanting profile wave by using UVPWGW. Its feature is that under the action of wind pressure, the wave profile is not symmetrized to a vertical axis, but that it is in the forward slanting form.展开更多
The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question o...The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question of optimizing the cutter for slanting knife cutting operation is addressed.Then the general differential equations for the optimum cutter are obtained,and analytic solutions for the workpiece,the contour of which consists of straight lines and arcs,are obtained.A method for solving the general equations is also presented.The cutting force and breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is employed.展开更多
An experimental analysis has been conducted to study the process of fluid accumulation for different borehole trajectories.More specifically,five heel angles have been experimentally realized to simulate the borehole ...An experimental analysis has been conducted to study the process of fluid accumulation for different borehole trajectories.More specifically,five heel angles have been experimentally realized to simulate the borehole trajectory of the sloping section of the formation.The fluid-carrying capacity,pressure drop and fluid discharge volatility have been investigated for these conditions and,accordingly,the relationship between heel angle and wellbore pressure drop fluid-carrying capacity has been determined.The results show that while the reasonable roll angle can increase the pressure loss in the wellbore,it is beneficial to drainage.In terms of pressure loss and liquid-carrying capacity,when the heeling angle is 50°,the latter is increased while the former becomes very high,which indicates that when drilling and completing wells on site,a 50°roll angle should be avoided.It is found that the main reason for the increase of the total pressure drop in the wellbore is the increase of the local pressure loss in the inclined section.From the perspective of drainage stability,when there is heeling in the inclined section of the horizontal well,the fluctuation of the wellbore drainage tends to be enhanced.Through the comparison of the Beggs-Brill(B-B)and Mukherjee-Brill liquid holdup methods,it is found that B-B method better predicts liquid holdup.A new method for calculating the pressure drop in the inclined section in the presence of lateral inclination is obtained by taking into account the pressure drop in the curved section.Through comparison with experimental data,it is found that the error is within 20%,and the prediction accuracy is high.展开更多
The nonlinear characteristics of the motion trajectory of the synthetic aperture radar(SAR)flight platform can lead to severe two-dimensional space-variance characteristics of the signal,greatly affecting the imaging ...The nonlinear characteristics of the motion trajectory of the synthetic aperture radar(SAR)flight platform can lead to severe two-dimensional space-variance characteristics of the signal,greatly affecting the imaging quality,and are currently considered as one of the difficulties in the field of SAR imaging.This paper first discusses the nonlinear trajectory SAR model and its space-variance characteristics and then discusses algorithms such as scaling-based algorithms,interpolation-based algorithms,time-domain algorithms,and hybrid algorithms.The relative merits and applicability of each algorithm are analyzed.Finally,computer simulation and actual data validation are conducted.展开更多
To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can b...To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.展开更多
The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) a...The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) and slant factors at the pierce points of satellite signals are the reasons of the residual error. An improved pseudorange differential approach is proposed and the effect of this new PR differential operation verified by using the simulation.展开更多
Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was util...Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.展开更多
A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the sla...A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the slant immersion has some interesting properties. The authors have great interest to consider slant immersions satisfying some additional conditions, such as unfull first normal bundles or Chen’s equality holding. They prove that there do not exist n-dimensional Kaehlerian slant immersions in CPn and CHn with unfull first normal bundles. Next, it is seen that every Kaehlerian slant submanifold satisfying an equality of Chen is minimal which is similar to that of Lagrangian immersions. But in contrast, it is shown that a large class of slant immersions do not exist thoroughly. Finally, they give an application of Chen’s inequality to general slant immersions in a complex projective space, which generalizes a result of Chen.展开更多
This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS netw...This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS network.The simulations are carried out by adding artificial noise to a real observation dataset.Instead of using the δ and σ parameters computed from slant wet delay,as in previous studies,we employ the Bias and RMS parameters,computed from the tomography results of total voxels,in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination.The results show that:(1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data's spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography,particularly in the lower atmosphere,bears great significance for any applications dependent on the Chinese operational meteorological service.展开更多
The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not ...The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.展开更多
Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at ...Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.展开更多
文摘Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fifth order Stokes wave and stream function wave by using Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives wind-driven slanting profile wave by using UVPWGW. Its feature is that under the action of wind pressure, the wave profile is not symmetrized to a vertical axis, but that it is in the forward slanting form.
文摘The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question of optimizing the cutter for slanting knife cutting operation is addressed.Then the general differential equations for the optimum cutter are obtained,and analytic solutions for the workpiece,the contour of which consists of straight lines and arcs,are obtained.A method for solving the general equations is also presented.The cutting force and breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is employed.
基金the support provided by the National Natural Science Foundation of China(No.62173049)the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(Grant K2021-17).
文摘An experimental analysis has been conducted to study the process of fluid accumulation for different borehole trajectories.More specifically,five heel angles have been experimentally realized to simulate the borehole trajectory of the sloping section of the formation.The fluid-carrying capacity,pressure drop and fluid discharge volatility have been investigated for these conditions and,accordingly,the relationship between heel angle and wellbore pressure drop fluid-carrying capacity has been determined.The results show that while the reasonable roll angle can increase the pressure loss in the wellbore,it is beneficial to drainage.In terms of pressure loss and liquid-carrying capacity,when the heeling angle is 50°,the latter is increased while the former becomes very high,which indicates that when drilling and completing wells on site,a 50°roll angle should be avoided.It is found that the main reason for the increase of the total pressure drop in the wellbore is the increase of the local pressure loss in the inclined section.From the perspective of drainage stability,when there is heeling in the inclined section of the horizontal well,the fluctuation of the wellbore drainage tends to be enhanced.Through the comparison of the Beggs-Brill(B-B)and Mukherjee-Brill liquid holdup methods,it is found that B-B method better predicts liquid holdup.A new method for calculating the pressure drop in the inclined section in the presence of lateral inclination is obtained by taking into account the pressure drop in the curved section.Through comparison with experimental data,it is found that the error is within 20%,and the prediction accuracy is high.
基金supported in part by the National Natural Science Foundation of China(No.62271510)in part by Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)+1 种基金in part by the Natural Science Foundation of Hunan Province(No.2021JJ40781)in part by the Open Fund of Laboratory of Pinghu.
文摘The nonlinear characteristics of the motion trajectory of the synthetic aperture radar(SAR)flight platform can lead to severe two-dimensional space-variance characteristics of the signal,greatly affecting the imaging quality,and are currently considered as one of the difficulties in the field of SAR imaging.This paper first discusses the nonlinear trajectory SAR model and its space-variance characteristics and then discusses algorithms such as scaling-based algorithms,interpolation-based algorithms,time-domain algorithms,and hybrid algorithms.The relative merits and applicability of each algorithm are analyzed.Finally,computer simulation and actual data validation are conducted.
基金financially supported by the national 863 program(2013AA064202)Marine subject interdisciplinary and guidance fund of Zhejiang University(188040+193414Y01)
文摘To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.
文摘The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) and slant factors at the pierce points of satellite signals are the reasons of the residual error. An improved pseudorange differential approach is proposed and the effect of this new PR differential operation verified by using the simulation.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60375021)教育部留学回国人员科研启动基金(The Project-Sponsored by SRF for ROCS+5 种基金SEM)湖南省杰出青年基金(the Fund of Hunan Province for Distinguished Young Scholarunder Grant No.05JJ10011)湖南省自然基金重点基金(No.04JJ20010)湖南省教育厅重点项目(the Research Project of Department ofEducation of Hunan ProvinceChina under Grant No.04A056No.05C092)。
文摘Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.
基金This project is supported by the NSFC(10271041)Tianyuan Youth Foundation of Mathematics.
文摘A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the slant immersion has some interesting properties. The authors have great interest to consider slant immersions satisfying some additional conditions, such as unfull first normal bundles or Chen’s equality holding. They prove that there do not exist n-dimensional Kaehlerian slant immersions in CPn and CHn with unfull first normal bundles. Next, it is seen that every Kaehlerian slant submanifold satisfying an equality of Chen is minimal which is similar to that of Lagrangian immersions. But in contrast, it is shown that a large class of slant immersions do not exist thoroughly. Finally, they give an application of Chen’s inequality to general slant immersions in a complex projective space, which generalizes a result of Chen.
基金supported by the National Basic ResearchDevelopment (973) Program of China (Grant No. 2012CB955903)+1 种基金the National Natural Science Foundation of China (Grant No. 20907047 and Grant No. 71373131)National Industry-specific Topics (Grant No.GYHY 201406078)
文摘This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS network.The simulations are carried out by adding artificial noise to a real observation dataset.Instead of using the δ and σ parameters computed from slant wet delay,as in previous studies,we employ the Bias and RMS parameters,computed from the tomography results of total voxels,in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination.The results show that:(1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data's spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography,particularly in the lower atmosphere,bears great significance for any applications dependent on the Chinese operational meteorological service.
基金supported by National Natural Science Foundation of China(Grant Nos.51675258,51261024,51265039)State Key Laboratory of Mechani-cal System and Vibration(Grant No.MSV201914)Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology(Grant No.6142003190210).
文摘The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.
基金financial support from the special fund of China’s central government for the development of local colleges and universities―the project of national first-level discipline in Oil and Gas Engineering, the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125019)the National Program on Key fundamental Research Project (973 Program, Grant No. 2011CB201005)
文摘Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.