We propose an extended lattice gas model with different maximum velocities to simulate pedestrian counter flow by considering the subconscious behaviour of walkers. Four types of walkers including faster right walkers...We propose an extended lattice gas model with different maximum velocities to simulate pedestrian counter flow by considering the subconscious behaviour of walkers. Four types of walkers including faster right walkers, slower right walkers, faster left walkers and slower left walkers are involved in the simulation. The simulation results show that our model can capture some essential features of pedestrian counter flows, such as the lane formation, segregation effect and phase separation at higher densities. We also find that the subconscious effect can reduce the occurrence of jam cluster evidently compared with the ease of un-subeonscious effect. At large maximum velocity, the critical density corresponding to the maximum flow rate of the fundamental diagram is in good agreement with the empirical results.展开更多
基金Supported by the National Basic Research Programme of China under Grant No 2006CB705500, the National Natural Science Foundation of China under Grant Nos 10532060 and 10562001, and the Shanghai Leading Academic Discipline Project under Grant No Y0103.
文摘We propose an extended lattice gas model with different maximum velocities to simulate pedestrian counter flow by considering the subconscious behaviour of walkers. Four types of walkers including faster right walkers, slower right walkers, faster left walkers and slower left walkers are involved in the simulation. The simulation results show that our model can capture some essential features of pedestrian counter flows, such as the lane formation, segregation effect and phase separation at higher densities. We also find that the subconscious effect can reduce the occurrence of jam cluster evidently compared with the ease of un-subeonscious effect. At large maximum velocity, the critical density corresponding to the maximum flow rate of the fundamental diagram is in good agreement with the empirical results.