Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess...Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.展开更多
The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on...The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on the ideas of the paper, the formulas of sub-interval perturbed finite element method based on the elements are given. The sub-interval amount is discussed and the approximate computation formula is given. At the same time, the computational precision is discussed and some measures of improving computational efficiency are given. Finally, based on sub-interval perturbed finite element method and anti-slide stability analysis method, the formula for computing the bounds of stability factor is given. It provides a basis for estimating and evaluating reasonably anti-slide stability of structures.展开更多
To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were...To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were applied to engineering examples to calculate the stability coefficient of the slope before and after excavation in the natural state. After comparative analysis, it was concluded that the former had a clear mechanical model and concept, which could quickly provide stability results;the latter could accurately determine the sliding surface of the slope and simulate the stress state changes of the rock and soil mass. The stability coefficients calculated by the two methods were within the stable range, but their values were different. On this basis, combined with the calculation principles, advantages and disadvantages of the two methods, a comprehensive analysis method of slope stability based on the limit equilibrium and finite element methods was proposed, and the rationality of the stability coefficient calculated by this method was judged for a slope case.展开更多
基金support provided by the UK Engineering and Physical Sciences Research Council(EP/V012169/1).
文摘Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.
文摘The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on the ideas of the paper, the formulas of sub-interval perturbed finite element method based on the elements are given. The sub-interval amount is discussed and the approximate computation formula is given. At the same time, the computational precision is discussed and some measures of improving computational efficiency are given. Finally, based on sub-interval perturbed finite element method and anti-slide stability analysis method, the formula for computing the bounds of stability factor is given. It provides a basis for estimating and evaluating reasonably anti-slide stability of structures.
文摘To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were applied to engineering examples to calculate the stability coefficient of the slope before and after excavation in the natural state. After comparative analysis, it was concluded that the former had a clear mechanical model and concept, which could quickly provide stability results;the latter could accurately determine the sliding surface of the slope and simulate the stress state changes of the rock and soil mass. The stability coefficients calculated by the two methods were within the stable range, but their values were different. On this basis, combined with the calculation principles, advantages and disadvantages of the two methods, a comprehensive analysis method of slope stability based on the limit equilibrium and finite element methods was proposed, and the rationality of the stability coefficient calculated by this method was judged for a slope case.