期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Design of TakagiSugeno fuzzy model based nonlinear sliding model controller 被引量:1
1
作者 Xu gong Chen Zengqiang Yuan Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期847-851,共5页
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to oper... A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix. 展开更多
关键词 sliding model control fuzzy control T-S fuzzy model Lyapunov stability
下载PDF
Robust Sliding Mode Control for a 2-DOF Lower Limb Exoskeleton Base on Linear Extended State Observer
2
作者 Zhenlei CHEN Qing GUO +1 位作者 Yao YAN Dan JIANG 《Mechanical Engineering Science》 2020年第2期1-6,I0004,共7页
For the 2-Degree of Freedom(DOF)lower limb exoskeleton,to ensure the system robustness and dynamic performance,a linearextended-state-observer-based(LESO)robust sliding mode control is proposed to not only reduce the ... For the 2-Degree of Freedom(DOF)lower limb exoskeleton,to ensure the system robustness and dynamic performance,a linearextended-state-observer-based(LESO)robust sliding mode control is proposed to not only reduce the influence of parametric uncertainties,unmodeled dynamics,and external disturbance but also estimate the unmeasurable real-time joint angular velocity directly.Then,via Lyapunov technology,the stability of the corresponding LESO and controller is proven.The appropriate and reasonable simulation was carried out to verify the effectiveness of the proposed LESO and exoskeleton controller. 展开更多
关键词 lower limb exoskeleton linear-extended-state-observer robust sliding model control uncertain nonlinearity
下载PDF
Slip-Control Strategy of Dual Independent Electric Drive Tracked Vehicle 被引量:1
3
作者 Shuyang Zhang Yunan Zhang +2 位作者 Keyan Ning Nanming Yan Qingfeng Fang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期715-724,共10页
In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was des... In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models. 展开更多
关键词 tracked vehicle electric drive braking slip sliding model control
下载PDF
Investigation on full vehicle height control algorithm using feedback linearization method
4
作者 陈思忠 刘畅 +2 位作者 吴志成 杨林 赵玉壮 《Journal of Beijing Institute of Technology》 EI CAS 2016年第2期172-180,共9页
Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of th... Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort. 展开更多
关键词 full vehicle height control feedback linearization sliding model control
下载PDF
Earth-observation satellite attitude control using passive and active hybrid magnetically suspended flywheels
5
作者 杨照华 杨宁宁 余远金 《Journal of Beijing Institute of Technology》 EI CAS 2014年第2期226-234,共9页
The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellit... The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law. 展开更多
关键词 attitude control passive and active hybrid magnetically suspended flywheels(P&A MSFWs) modeling and analyzing sliding mode control(SMC) fuzzy control
下载PDF
Sliding Mode Control for Nonlinear System Based on T-S Model
6
作者 WU Zhong-qiangCollege of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China 《Systems Science and Systems Engineering》 CSCD 2002年第4期425-430,共6页
Using T-S model as an approximation for nonlinear system, the nonlinear system has been fuzzy into local linear model. The variable structure controller designed by using Lyapunov theory insures the stability of syste... Using T-S model as an approximation for nonlinear system, the nonlinear system has been fuzzy into local linear model. The variable structure controller designed by using Lyapunov theory insures the stability of system. The sliding mode controller is designed by using unit vector style, and it suit the uncertain elements satisfying matching condition or do not satisfy matching condition. The effect of the scheme has been tasted with a simulation of an inverted pendulum. 展开更多
关键词 NONLINEAR T-S model sliding model control
原文传递
Sliding mode control of reaction flywheel-based brushless DC motor with buck converter 被引量:6
7
作者 Liu Gang Zhang Cong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期967-975,共9页
Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC... Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities. 展开更多
关键词 DC-DC converter Flywheels State averaging model sliding mode control sliding surface Topology
原文传递
An integrated approach for dynamic traffic routing and ramp metering using sliding mode control 被引量:1
8
作者 Hirsh Majid Chao Lu Hardy Karim 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第2期116-128,共13页
The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model c... The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands. 展开更多
关键词 Highway traffic simulation Macroscopic model sliding mode control Dynamic traffic routing On-ramp metering Integrated control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部