期刊文献+
共找到3,023篇文章
< 1 2 152 >
每页显示 20 50 100
A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect 被引量:4
1
作者 Z.Liu C.Y.Zhou +2 位作者 B.T.Li Y.Q.Lu X.Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期457-467,共11页
The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study... The deformation and failure of soft rock affected by hydro-mechanical(HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. 展开更多
关键词 Soft rock Hydro-mechanical (HM) effect Mineral dissolution-diffusion Grain sliding model
下载PDF
CALCULATION OF THE DAMPING OF THE Zn-27Al ALLOY BASED ON THE MICRO INTERFACE SLIDING MODEL 被引量:2
2
作者 Y.Z. Zhao Q. Gao Y.C. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期228-234,共7页
The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most ... The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most on the basis of analyzing the microstructures. Approximate expressions have been educed, which can be used to quantificationally work out the damping of the Zn-27Al alloy on the basis of the micro interface sliding model. By comparing the testing damping properties of the foundry Zn-27Al alloys and the Zn-27Al alloys after modification, solid solution, and natural aging, it was shown that the expressions were rational. 展开更多
关键词 MODIFICATION solid solution and aging damping micromechanism micro interface sliding model
下载PDF
Design of TakagiSugeno fuzzy model based nonlinear sliding model controller 被引量:1
3
作者 Xu gong Chen Zengqiang Yuan Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期847-851,共5页
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to oper... A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix. 展开更多
关键词 sliding model control fuzzy control T-S fuzzy model Lyapunov stability
下载PDF
Effect of a two-phase wedge-sliding model on the ingredient drift of a stable mixed fluid and its computing method
4
作者 韩志宏 刘佐民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期314-322,共9页
A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-unifor... A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model. 展开更多
关键词 mixed fluid ingredient drift wedge-sliding model computing method
下载PDF
Finite Control Set Model Predictive Torque Control Using Sliding Model Control for Induction Motors 被引量:2
5
作者 Yanqing Zhang Zhonggang Yin +2 位作者 Wei Li Jing Liu Yanping Xu 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第3期262-270,共9页
Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional... Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional FCS-MPTC speed controller design,a classical proportional integral(PI)controller is typically chosen to generate the torque reference.However,the PI controller is dependent on system parameters and sensitive to the load torque variation,which seriously affects control performance.In this paper,a model predictive torque control using sliding mode control(MPTC+SMC)for IM is proposed to enhance the robust performance of the drive system.First,the influence of the parameter mismatches for FCS-MPTC is analyzed.Second,the shortcomings of traditional PI controller are derived.Then,the proposed MPTC+SMC method is designed,and the MPTC+PI and MPTC+SMC are compared theoretically.Finally,experimental results demonstrate the correctness and effectiveness of the proposed MPTC+SMC.In comparison with MPTC+PI,MPTC+SMC has the better dynamic performance and stronger robust performance against parameter variations and load disturbance. 展开更多
关键词 Induction motor model predictive torque control sliding mode control ROBUSTNESS
下载PDF
Creep model for unsaturated soils in sliding zone of Qianjiangping landslide 被引量:11
6
作者 Liangchao Zou Shimei Wang Xiaoling Lai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期162-167,共6页
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctua... The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed, 展开更多
关键词 sliding zone Unsaturated soils Matric suction Creep behavior Burgers model
下载PDF
Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table 被引量:11
7
作者 刘金琨 孙富春 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期65-71,共7页
Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is th... Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time. 展开更多
关键词 nominal model sliding mode control backstepping control robust control 3-axis flight table
下载PDF
Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism 被引量:6
8
作者 WANG Zhuang LI Chi DING Xuan-ming 《Journal of Mountain Science》 SCIE CSCD 2019年第4期935-943,共9页
When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil... When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism. 展开更多
关键词 SLOPE engineering TRANSPARENT SOIL model test INTERFACIAL sliding MECHANISM
下载PDF
Chattering analysis for discrete sliding mode control ofdistributed control systems 被引量:4
9
作者 litong ren shousheng xie +2 位作者 yu zhang jingbo peng ledi zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1096-1107,共12页
The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti... The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult. 展开更多
关键词 distributed control system sliding mode control switching system chattering analysis.
下载PDF
Decentralized model reference adaptive sliding mode control based on fuzzy model 被引量:4
10
作者 Gu Haijun Zhang Tianping Shen Qikun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期182-186,192,共6页
A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approx... A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach. 展开更多
关键词 decentralized control model reference adaptive control sliding mode control fuzy model global stability.
下载PDF
Robust Adaptive Gain Higher Order Sliding Mode Observer Based Control-constrained Nonlinear Model Predictive Control for Spacecraft Formation Flying 被引量:9
11
作者 Ranjith Ravindranathan Nair Laxmidhar Behera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期367-381,共15页
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher... This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach. 展开更多
关键词 Adaptive gain higher order sliding mode observer leader-follower formation nonlinear model predictive control spacecraft formation flying tracking control
下载PDF
An Adaptive Nonsingular Fast Terminal Sliding Mode Control for Yaw Stability Control of Bus Based on STI Tire Model 被引量:5
12
作者 Xiaoqiang Sun Yujun Wang +2 位作者 Yingfeng Cai Pak Kin Wong Long Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期182-195,共14页
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the... Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model. 展开更多
关键词 BUS Yaw stability control sliding mode control STI tire model CO-SIMULATION
下载PDF
Sliding Mode Control Design via Reduced Order Model Approach 被引量:2
13
作者 B.Bandyopadhyay Alemayehu G/Egziabher Abera +1 位作者 S.Janardhanan Victor Sreeram 《International Journal of Automation and computing》 EI 2007年第4期329-334,共6页
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g... This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface. 展开更多
关键词 sliding mode control order reduction reduced order model higher order system optimal control.
下载PDF
Modeling and Sliding Mode Control with Boundary Layer for Unmanned Coaxial Rotor Ducted Fan Helicopter 被引量:1
14
作者 Chen Zhi Wang Daobo +1 位作者 Zeng Ziyang Wang Biao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期199-207,共9页
The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor duc... The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller. 展开更多
关键词 modelING COAXIAL ROTOR ducted fan HELICOPTER (RDFH) TIME-DOMAIN analysis sliding mode controller(SMC)
下载PDF
Model predictive current control for PMSM driven by three-level inverter based on fractional sliding mode speed observer 被引量:2
15
作者 TENG Qing-fang LUO Wei-duo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期358-364,共7页
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ... Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter fractional sliding mode speed observer model predictive current control(MPCC)
下载PDF
Characteristic Model-based Discrete-time Sliding Mode Control for Spacecraft with Variable Tilt of Flexible Structures 被引量:5
16
作者 Lei Chen Yan Yan +1 位作者 Chaoxu Mu Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期42-50,共9页
In this paper, the finite-time attitude tracking control problem for the spacecrafts with variable tilt of flexible appendages in the conditions of exogenous disturbances and inertia uncertainties is addressed. First ... In this paper, the finite-time attitude tracking control problem for the spacecrafts with variable tilt of flexible appendages in the conditions of exogenous disturbances and inertia uncertainties is addressed. First the characteristic modeling method is applied to the problem of the spacecraft modeling. Second, a novel adaptive sliding mode surface is designed based on the characteristic model. Furthermore, a discrete-time sliding mode control (DTSMC) law, which makes the tracking error converge into a predefined bound in finite time, is proposed by employing the parameters of characteristic model associated with the sliding mode surface to provide better performances, robustness, faster response, and higher control precision. The designed DTSMC includes the adaptive control architecture and is chattering-free. Finally, digital simulations of a sun synchronous orbit satellite (SSOS) are presented to illustrate effectiveness of the control strategies as well as to verify the practical feasibility of the rapid maneuver mission. © 2014 Chinese Association of Automation. 展开更多
关键词 Flexible structures NAVIGATION ORBITS SPACECRAFT
下载PDF
Robust Modeling, Sliding-Mode Controller, and Simulation of an Underactuated ROV Under Parametric Uncertainties and Disturbances 被引量:2
17
作者 Mostafa Eslami Cheng Siong Chin Amin Nobakhti 《Journal of Marine Science and Application》 CSCD 2019年第2期213-227,共15页
A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A slid... A dynamic model of a remotely operated vehicle(ROV)is developed.The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX?and WAMIT?.A sliding-mode controller(SMC)is then designed for the ROV model.The controller is subsequently robustified against modeling uncertainties,disturbances,and measurement errors.It is shown that when the system is subjected to bounded uncertainties,the SMC will preserve stability and tracking response.The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties. 展开更多
关键词 Remotely operated vehicle ROBUST modelING sliding-mode control Simulation Disturbances PARAMETRIC UNCERTAINTIES
下载PDF
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:12
18
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV.... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Aircraft control Approximation algorithms Attitude control BACKSTEPPING Controllers Functions Learning algorithms Radial basis function networks Robust control Robustness (control systems) sliding mode control Uncertainty analysis
下载PDF
Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification
19
作者 卢晟昊 韩靖宇 阎绍泽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期452-466,共15页
Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring... Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved. 展开更多
关键词 periodic variation stress distribution micro sliding friction model tangential stiffness experimental analysis STICK-SLIP
下载PDF
Model-Free Sliding Mode Control for PMSM Drive System Based on Ultra-Local Model
20
作者 Kaihui Zhao Wenchang Liu +3 位作者 Tonghuan Yin Ruirui Zhou Wangke Dai Gang Huang 《Energy Engineering》 EI 2022年第2期767-780,共14页
This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the ... This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the input and the output of the PMSM.Then,the novel MFSMC method is presented,and the controller is designed based on ULM and MFSMC.A sliding mode observer(SMO)is constructed to estimate the unknown part of the ULM.The estimated unknown part is feedbacked to MFSMC controller to performcompensation for parameter perturbations and external disturbances.Compared with the sliding mode control(SMC)method,the results of simulation and experiment demonstrate that the presented MFSMC method improves the dynamic response and robustness of the PMSM drive system. 展开更多
关键词 Permanent magnet synchronous motor(PMSM) ultra-local model(ULM) model-free sliding mode control(MFSMC) sliding mode observer(SMO)
下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部