This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the ...This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the input and the output of the PMSM.Then,the novel MFSMC method is presented,and the controller is designed based on ULM and MFSMC.A sliding mode observer(SMO)is constructed to estimate the unknown part of the ULM.The estimated unknown part is feedbacked to MFSMC controller to performcompensation for parameter perturbations and external disturbances.Compared with the sliding mode control(SMC)method,the results of simulation and experiment demonstrate that the presented MFSMC method improves the dynamic response and robustness of the PMSM drive system.展开更多
采用转矩环取代传统的电流环,可减小非理想反电势无刷直流电机(brushless DC motor,BLDCM)的转矩脉动,提高其控制性能,而转矩环中反馈转矩计算的关键在于绕组反电势的准确获取。建立考虑参数偏差的滑模观测器(sliding-mode observer,SMO...采用转矩环取代传统的电流环,可减小非理想反电势无刷直流电机(brushless DC motor,BLDCM)的转矩脉动,提高其控制性能,而转矩环中反馈转矩计算的关键在于绕组反电势的准确获取。建立考虑参数偏差的滑模观测器(sliding-mode observer,SMO)对反电势进行实时观测,定量分析了定子电阻偏差对观测结果的影响,分析表明反电势观测的稳态误差等于电阻偏差量与电流的乘积。为消除这一影响,利用李雅普诺夫(Lyapunov)稳定性理论,设计了定子电阻参数辨识的自适应率,在线辨识得到的电阻参数用于调整SMO的系数矩阵,构成了新型的自适应滑模观测器。最后,利用RT-LAB实时控制器进行实验,验证了上述分析结果的正确性,证明了所提方法能够正确快速地观测无刷直流电机反电势。展开更多
基金This work was supported in part by the Hunan Provincial Natural Science Foundation of China under Grant Nos.2020JJ6083,2019JJ40072,2021JJ50052 and 2020JJ6067the Program of JSPS(Japan Society for the Promotion of Science)International Research Fellows under Grant No.19F19703+3 种基金the Scientific Research Fund of the Hunan Provincial Education Department under Grant No.18A267the Natural Science Foundation of China under Grant No.61773159in part by the Teaching Reform Research Project of Hunan Provincial Education Department of China(Hunan Education Notice[2019]No.291)under Grant No.543the Degree&Postgraduate Education Reform Project of Hunan Province under Grant No.2019JGZD068.
文摘This paper presents a novel model-free sliding mode control(MFSMC)method to improve the speed response of permanent magnet synchronous machine(PMSM)drive system.The ultra-local model(ULM)is first derived based on the input and the output of the PMSM.Then,the novel MFSMC method is presented,and the controller is designed based on ULM and MFSMC.A sliding mode observer(SMO)is constructed to estimate the unknown part of the ULM.The estimated unknown part is feedbacked to MFSMC controller to performcompensation for parameter perturbations and external disturbances.Compared with the sliding mode control(SMC)method,the results of simulation and experiment demonstrate that the presented MFSMC method improves the dynamic response and robustness of the PMSM drive system.
文摘采用转矩环取代传统的电流环,可减小非理想反电势无刷直流电机(brushless DC motor,BLDCM)的转矩脉动,提高其控制性能,而转矩环中反馈转矩计算的关键在于绕组反电势的准确获取。建立考虑参数偏差的滑模观测器(sliding-mode observer,SMO)对反电势进行实时观测,定量分析了定子电阻偏差对观测结果的影响,分析表明反电势观测的稳态误差等于电阻偏差量与电流的乘积。为消除这一影响,利用李雅普诺夫(Lyapunov)稳定性理论,设计了定子电阻参数辨识的自适应率,在线辨识得到的电阻参数用于调整SMO的系数矩阵,构成了新型的自适应滑模观测器。最后,利用RT-LAB实时控制器进行实验,验证了上述分析结果的正确性,证明了所提方法能够正确快速地观测无刷直流电机反电势。