The construction market of super-high-rise buildings and long-span bridges has recognized unprecedented expansion owing to the development of high performance and high strength materials and the advances achieved in t...The construction market of super-high-rise buildings and long-span bridges has recognized unprecedented expansion owing to the development of high performance and high strength materials and the advances achieved in the design and construction technologies. In parallel to the lengthening and enlargement in scale of the structures, securing quality control technology of concrete while reducing the construction duration using improved construction methods emerges as a critical problem for concrete structures. In the erection of concrete pylons, slip forming represents the latest method offering the advantage of reducing drastically the construction duration compared to other methods by adopting automated slip-up of the forms and enabling 24-hour continuous placing. This study determines the slip-up time of the slip form by evaluating the early strength through the surface wave velocity and develops lightweight GFRP form in order to secure the quality of concrete during the slip form erection of pylons. A slip form system is fabricated and mockup test is conducted to verify the performances of the developed techniques through the construction of 10 m-high pylon with a hollow section.展开更多
The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete ...The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete pylon of long-span cable bridges offers the advantage of being significantly faster than applying the auto-climbing system (ACS) form method. Therefore, this study presents the development of an innovative slip form system for pylons with tapered cross-section. Surface wave inspection system is applied for the determination of slip-up time, wireless hydraulic control system is applied for auto rising, GPS system is used to manage the pylon configuration, and lightweight GFRP (Grass Fiber Reinforced Plastic) panels are applied in the slip form system. Small-scale tests were conducted three times to validate the performance of the developed core technologies, and full-scale tests were conducted twice to validate and verify the developed innovative slip form. The full-scale tapered concrete pylons have hollow shafts and a height of 10 m. The sectional dimensions are varied according to the construction height. The experimental constructions of the tapered pylons using the innovative slip form were conducted successfully. This system is the world’s first application of GFRP slip form panel.展开更多
Slip-form system constitutes the latest technology for the erection of elevated concrete pylons. This paper investigates the design of slip-form system applying BIM technology for the efficient development of the slip...Slip-form system constitutes the latest technology for the erection of elevated concrete pylons. This paper investigates the design of slip-form system applying BIM technology for the efficient development of the slip-form system. The considered pylon has a height of 10 m and presents the rectangular hollow section generally adopted in cable-supported bridges. The slip-form was thus designed to accommodate the tapered cross-section and changing thickness considering the continuous placing of concrete. In addition, the safety of the system was examined with regard to the various loads applied on the slip form along the construction. The design results could be verified visually through BIM and the applicability of the designed slip-form was validated in advance through virtual assembly and construction.展开更多
文摘The construction market of super-high-rise buildings and long-span bridges has recognized unprecedented expansion owing to the development of high performance and high strength materials and the advances achieved in the design and construction technologies. In parallel to the lengthening and enlargement in scale of the structures, securing quality control technology of concrete while reducing the construction duration using improved construction methods emerges as a critical problem for concrete structures. In the erection of concrete pylons, slip forming represents the latest method offering the advantage of reducing drastically the construction duration compared to other methods by adopting automated slip-up of the forms and enabling 24-hour continuous placing. This study determines the slip-up time of the slip form by evaluating the early strength through the surface wave velocity and develops lightweight GFRP form in order to secure the quality of concrete during the slip form erection of pylons. A slip form system is fabricated and mockup test is conducted to verify the performances of the developed techniques through the construction of 10 m-high pylon with a hollow section.
文摘The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete pylon of long-span cable bridges offers the advantage of being significantly faster than applying the auto-climbing system (ACS) form method. Therefore, this study presents the development of an innovative slip form system for pylons with tapered cross-section. Surface wave inspection system is applied for the determination of slip-up time, wireless hydraulic control system is applied for auto rising, GPS system is used to manage the pylon configuration, and lightweight GFRP (Grass Fiber Reinforced Plastic) panels are applied in the slip form system. Small-scale tests were conducted three times to validate the performance of the developed core technologies, and full-scale tests were conducted twice to validate and verify the developed innovative slip form. The full-scale tapered concrete pylons have hollow shafts and a height of 10 m. The sectional dimensions are varied according to the construction height. The experimental constructions of the tapered pylons using the innovative slip form were conducted successfully. This system is the world’s first application of GFRP slip form panel.
文摘Slip-form system constitutes the latest technology for the erection of elevated concrete pylons. This paper investigates the design of slip-form system applying BIM technology for the efficient development of the slip-form system. The considered pylon has a height of 10 m and presents the rectangular hollow section generally adopted in cable-supported bridges. The slip-form was thus designed to accommodate the tapered cross-section and changing thickness considering the continuous placing of concrete. In addition, the safety of the system was examined with regard to the various loads applied on the slip form along the construction. The design results could be verified visually through BIM and the applicability of the designed slip-form was validated in advance through virtual assembly and construction.