期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Three-dimensional mixed convection stagnation-point fow past a vertical surface with second-order slip velocity
1
作者 A.V.ROSCA N.C.ROSCA I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期641-652,共12页
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is... This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics. 展开更多
关键词 three-dimensional(3D)mixed convection flow stagnation point flow first-order slip velocity second-order slip velocity numerical solution stability analysis
下载PDF
Re-adhesion control strategy based on the optimal slip velocity seeking method 被引量:4
2
作者 Caglar Uyulan Metin Gokasan Seta Bogosyan 《Journal of Modern Transportation》 2018年第1期36-48,共13页
In the railway industry, re-adhesion control plays an important role in attenuating the slip occurrence due to the low adhesion condition in the wheel-rail inter- action. Braking and traction forces depend on the norm... In the railway industry, re-adhesion control plays an important role in attenuating the slip occurrence due to the low adhesion condition in the wheel-rail inter- action. Braking and traction forces depend on the normal force and adhesion coefficient at the wheel-rail contact area. Due to the restrictions on controlling normal force, the only way to increase the tractive or braking effect is to maximize the adhesion coefficient. Through efficient uti- lization of adhesion, it is also possible to avoid wheel-rail wear and minimize the energy consumption. The adhesion between wheel and rail is a highly nonlinear function of many parameters like environmental conditions, railway vehicle speed and slip velocity. To estimate these unknown parameters accurately is a very hard and competitive challenge. The robust adaptive control strategy presented in this paper is not only able to suppress the wheel slip in time, but also maximize the adhesion utilization perfor- mance after re-adhesion process even if the wheel-rail contact mechanism exhibits significant adhesion uncer- tainties and/or nonlinearities. Using an optimal slip velocity seeking algorithm, the proposed strategy provides a satisfactory slip velocity tracking ability, which was demonstrated able to realize the desired slip velocity without experiencing any instability problem. The control torque of the traction motor was regulated continuously to drive the railway vehicle in the neighborhood of the opti- mal adhesion point and guarantee the best traction capacity after re-adhesion process by making the railway vehicle operate away from the unstable region. The results obtained from the adaptive approach based on the second- order sliding mode observer have been confirmed through theoretical analysis and numerical simulation conducted in MATLAB and Simulink with a full traction model under various wheel-rail conditions. 展开更多
关键词 Re-adhesion control Traction system dynamicmodel Optimal slip velocity estimation
下载PDF
Variable fluid properties and thermal radiation effects on flow and heat transfer in micropolar fluid film past moving permeable infinite flat plate with slip velocity
3
作者 M.A.A.MAHMOUD S.E.WAHEED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第5期663-678,共16页
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip veloc... This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity. The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature. The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters. In comparison with the previously published work, the excellent agreement is shown. The effects of various parameters on the velocity, the microrotation velocity, and the temperature profiles, as well as the skin-friction coefficient and the Nusselt number, are plotted and discussed. 展开更多
关键词 micropolar fluid thin film slip velocity variable fluid properties thermalradiation Chebyshev spectral method
下载PDF
Numerical prediction of particle slip velocity in turbulence by CFD-DEM simulation 被引量:1
4
作者 Zhixin Sun Xiaokang Yan +3 位作者 Lijun Wang Xiaoheng Li Ai Wang Haijun Zhang 《Particuology》 SCIE EI CAS CSCD 2023年第9期170-179,共10页
Turbulent environment improves the flotation recovery of fine particles by promoting the particle–bubble collision rate,which directly depends on the particle slip velocity.However,the existing slip velocity models a... Turbulent environment improves the flotation recovery of fine particles by promoting the particle–bubble collision rate,which directly depends on the particle slip velocity.However,the existing slip velocity models are not applicable to fine particles in turbulence.The mechanism of turbulence characteristics and particle properties on the slip velocity of fine particles in turbulence was unclear.In this study,a coupled ANSYS FLUENT and EDEM based on computational fluid dynamics(CFD)and discrete element method(DEM)were used to simulate the slip velocity of fine particles in the approximately homogenous isotropic turbulence,which was excited by the grid.The reliability of the used CFD-DEM simulation method was validated against the slip velocity measured by the particle image velocimetry(PIV)experiments.In particular,the effects of the particle shapes,particle densities,and turbulence intensities on the slip velocity have been investigated with this numerical method.Numerical results show that particle shapes have no significant effect on fine particles between 37 and 225μm.The slip velocity of the spherical particles increases with the turbulence intensity and particle density.Based on the simulated data,a model which has a correlation coefficient of 0.95 is built by using nonlinear fitting. 展开更多
关键词 slip velocity Fine particles TURBULENCE CFD-DEM
原文传递
LOCAL SLIP VELOCITY IN A DOWNER 被引量:2
5
作者 Songgeng Li Weigang Lin Jianzhong Yao 《China Particuology》 SCIE EI CAS CSCD 2003年第6期258-261,共4页
Based on the EMMS model, the local slip velocity between gas and solid is systematically analyzed and a theoretical correlation of local slip velocity with local voidage for a downer is derived as follows:U_s(r)/U_t=D... Based on the EMMS model, the local slip velocity between gas and solid is systematically analyzed and a theoretical correlation of local slip velocity with local voidage for a downer is derived as follows:U_s(r)/U_t=D^(8/7)(1-ε_mt)^(-2/7)[(1-ε(r)/(ε(r))]^(8/7)]ε(r)(47/14)((ε(r)-ε_(mt))/ε(r)) Using this correlation, the local gas-solid slip velocity in a downer is calculated. The calculated results are well consistent with experimental data. In addition, the variation of the local slip velocity with its corresponding solid holdup is also dis-cussed. 展开更多
关键词 EMMS model local slip velocity VOIDAGE DOWNER
原文传递
Effects of nonlinear velocity slip and temperature jump onpseudo-plastic power-law fluid over moving permeable surface in presence of magnetic field 被引量:1
6
作者 Xinhui SI Haozhe LI +1 位作者 Yanan SHEN Liancun ZHENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第3期333-342,共10页
Flow and heat transfer of a pseudo-plastic power-law fluid over a stretching permeable surface with the magnetic effect is investigated. In the boundary conditions,the nonlinear temperature jump and the velocity slip ... Flow and heat transfer of a pseudo-plastic power-law fluid over a stretching permeable surface with the magnetic effect is investigated. In the boundary conditions,the nonlinear temperature jump and the velocity slip are considered. Semi-similarity equations are obtained and solved by bvp4c with MATLAB. The problem can be considered as an extension of the previous work done by Mahmoud(Mahmoud, M. A. A. Slip velocity effect on a non-Newtonian power-law fluid over a moving permeable surface with heat generation. Mathematical and Computer Modelling, 54, 1228–1237(2011)). Efforts are made to discuss the effects of the power-law number, slip velocity, and temperature jump on the dimensionless velocity and temperature distribution. 展开更多
关键词 power-law fluid varying thermal conductivity slip velocity temperature jump magnetohydrodynamic (MHD)
下载PDF
INFLUENCE OF SLIP VELOCITY ON BLOOD FLOW THROUGH AN ARTERY WITH PERMEABLE WALL: A THEORETICAL STUDY
7
作者 A. SINHA J. C. MISRA 《International Journal of Biomathematics》 2012年第5期147-166,共20页
A theoretical investigation concerning the influence of slip velocity on the flow of blood through an artery having its wall permeable has been carried out. Here blood is treated as a homogeneous Newtonian fluid. The ... A theoretical investigation concerning the influence of slip velocity on the flow of blood through an artery having its wall permeable has been carried out. Here blood is treated as a homogeneous Newtonian fluid. The flow is characterized by three parameters: /3 the ratio of radius to length of the arterial segment, Re the characteristic Reynolds number associated with the pressure outside the arterial segment and c the filtration coe^cient. The problem has been solved by the use of a perturbation technique, e is considered to be very small, ensuring the validity of the perturbation method. The computed numerical results are presented graphically to depict the variations in velocity, volumetric flow rate, wall shear stress and flow resistance. 展开更多
关键词 slip velocity permeable artery newtonian fluid.
原文传递
SLIP VELOCITY MODEL OF POROUS WALLS ABSORBED BY HYDROPHOBIC NANOPARTICLES SIO_2 被引量:13
8
作者 GU Chun-yuan DI Qin-feng FANG Hai-ping 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第3期365-371,共7页
According to new slip effects on nanopatterned interfaces, the mechanism of enhancing water injection into hydrophobic nanomaterial SiO2 was proposed. When Hydrophobic Nanoparticles(HNPs)are adsorbed on surfaces of ... According to new slip effects on nanopatterned interfaces, the mechanism of enhancing water injection into hydrophobic nanomaterial SiO2 was proposed. When Hydrophobic Nanoparticles(HNPs)are adsorbed on surfaces of porous walls, hydrophobic nanoparticles layers are formed instead of hydrated layer, and slip effects appear on the pore wall when a driving pressure is applied to the rock cores sample. It makes fluid to move more quickly and the flow capacity increases greatly. Experiments on changing wettability of porous walls were conducted, and the phenomenon that porous walls surfaces were adsorbed by nanoparticles was validated with the Environment Scan Electron Microscopy(ESEM). The results of displacement experiments show that flowing resistance is greatly reduced, and water-phase effective permeability is increased by 47 % averagely after being treated by nanofluid. These results indicate that the slip effect may occur on nanoparticle film of porous walls. Based on this new mechanism of enhancing water injection about hydrophobic nanomaterial SiO2, a slip velocity model in uniform porous media was introduced, and some formulas for the ratio of slip length to radius, slip length ,stream slip velocity and flux increment were deduced. and calculated results indicate that the ratio of slip length to radius is about 3.54%-6.97%, and the slip length is about 0.024 μ m -0.063 μ m. The proposed model can give a good interpretation for the mechanisms of enhancing water injection with the HNPs. 展开更多
关键词 hydrophobic nanomaterial SiO2 mechanism of enhancing water injection velocity slip model core displacement experiments ADSORPTION WETTABILITY
原文传递
Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids 被引量:4
9
作者 Umar Khan Naveed Ahmed +1 位作者 Mir Asadullah Syed Tauseef Mohyud-din 《Propulsion and Power Research》 SCIE 2015年第1期40-49,共10页
Squeezing flow of nanofluids has been taken into account under the effects of viscous dissipation and velocity slip.Two types of base fluids are used to study the behavior of Copper nanoparticles between parallel plat... Squeezing flow of nanofluids has been taken into account under the effects of viscous dissipation and velocity slip.Two types of base fluids are used to study the behavior of Copper nanoparticles between parallel plates.Nonlinear ordinary differential equations governing the flow are obtained by imposing similarity transformations on conservation laws.Resulting equations are solved by using an efficient analytical technique the variation of parameters method(VPM).Influences of nanoparticle concentration and different emerging parameters on flow profiles are presented graphically coupled with comprehensive discussions.A numerical solution is also sought for the sake of comparison.Effect of different parameters on skin friction coefficient and Nusselt number is also discussed. 展开更多
关键词 Squeezing flow Nanofluids Variation of parameters method(VPM) velocity slip Numerical solution
原文传递
Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows 被引量:1
10
作者 魏文韫 朱家骅 +2 位作者 夏素兰 戴光清 高旭东 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期163-169,共7页
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity... Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation. 展开更多
关键词 supersonic gas-droplet two-phase flow interfacial momentum transfer velocity slip relaxation time numerical simulation laser Doppler velocimeter measurement
下载PDF
Integral Transform Method for a Porous Slider with Magnetic Field and Velocity Slip
11
作者 Naeem Faraz Yasir Khan +1 位作者 Amna Anjum Anwar Hussain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1099-1118,共20页
Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for examp... Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable. 展开更多
关键词 Porous slider MHD flow Reynolds number velocity slip integral transform method.
下载PDF
Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation
12
作者 M.Ijaz Khan Seifedine Kadry +1 位作者 Yuming Chu M.Waqas 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期17-25,共9页
The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks.Electrical conduc... The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks.Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation.Both the disks are rotating with different angular frequencies and stretches with different rates.Here graphene oxide and titanium dioxide are considered for hybrid nanoparticles and water as a continuous phase liquid.Joule heating,heat generation/absorption and viscous dissipation effects are incorporated in the mathematical modeling of energy expression.Furthermore,binary chemical reaction with activation energy is considered.The total entropy rate is calculated in the presence of heat transfer irreversibility,fluid friction irreversibility,Joule heating irreversibility,porosity irreversibility and chemical reaction irreversibility through thermodynamics second law.The nonlinear governing equations are first converted into ordinary differential equations through implementation of appropriate similarity transformations and then numerical solutions are calculated through Built-in-Shooting method.Characteristics of sundry flow variables on the entropy generation rate,velocity,concentration,Bejan number,temperature are discussed graphically for both graphene oxide and titanium dioxide hybrid nanoparticles.The engineering interest like skin friction coefficient and Nusselt number are computed numerically and presented through tables.It is noticed from the obtained results that entropy generation rate and Bejan number have similar effects versus diffusion parameter.Also entropy generation rate is more against the higher Brinkman number. 展开更多
关键词 Darcy-Forchheimer porous medium Titanium dioxide and graphene oxide nanoparticles Second order velocity slip Convective boundary condition Activation energy Heat generation/absorption
下载PDF
Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity
13
作者 Tiegang Fang Fujun Wang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期54-58,共5页
The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be appl... The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated. 展开更多
关键词 MHD Viscous slip MHD Flow over a Moving Sheet with an Arbitrary Surface velocity
下载PDF
Slip flow and variable properties of viscoelastic fluid past a stretching surface embedded in a porous medium with heat generation 被引量:2
14
作者 Ahmed M.Megahed 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期991-999,共9页
This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid... This study examines theoretically and computationally the non-Newtonian boundary layer flow and heat transfer for a viscoelastic fluid over a stretching continuous sheet embedded in a porous medium with variable fluid properties, slip velocity, and internal heat generation/absorption. The flow in boundary layer is considered to be generated solely by the stretching of the sheet adjacent to porous medium with boundary wall slip condition. Highly nonlinear momentum and thermal boundary layer equations governing the flow and heat transfer are reduced to set of nonlinear ordinary differential equations by appropriate transformation. The resulting ODEs are successfully solved numerically with the help of shooting method. Graphical results are shown for non-dimensional velocities and temperature. The effects of heat generation/absorption parameter, the porous parameter, the viscoelastic parameter, velocity slip parameter, variable thermal conductivity and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction coefficient and Nusselt number are presented. Comparison of numerical results is made with the earlier published results under limiting cases. 展开更多
关键词 viscoelastic fluid variable fluid properties slip velocity
下载PDF
Influence of Brownian Motion, Thermophoresis and Magnetic Effects on a Fluid Containing Nanoparticles Flowing over a Stretchable Cylinder
15
作者 Aaqib Majeed Ahmad Zeeshan 《Fluid Dynamics & Materials Processing》 EI 2024年第3期525-536,共12页
The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In additio... The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In addition,the Lorentz force is taken into account.The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation.The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB.The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.The magnetic field has a different influence(in terms of trends)on velocity and concentration. 展开更多
关键词 Mixed convection Brownian motion heat transfer porous surface velocity slip
下载PDF
Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation,energy omission
16
作者 Saleem Nasir Sekson Sirisubtawee +1 位作者 Pongpol Juntharee Taza Gul 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期193-202,共10页
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ... Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement. 展开更多
关键词 hybrid nanofluid(SWCNT+MWCNT/H_(2)O) velocity slip conditions nonlinear thermal radiation exponential stretching/shrinking sheet inclined magnetohydrodynamic(MHD)stagnation flow
下载PDF
Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction 被引量:2
17
作者 Jing ZHU Liu ZHENG +1 位作者 Liancun ZHENG Xinxin ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1131-1146,共16页
The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the model... The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and A1203, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions axe derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically. 展开更多
关键词 NANOFLUID velocity slip temperature jump homotopy analysis method(HAM) heat and mass transfer magnetohydrodynamic (MHD) flow
下载PDF
Non-Newtonian biomagnetic fluid flow through a stenosed bifurcated artery with a slip boundary condition
18
作者 Yaxin XU Jing ZHU +1 位作者 Liancun ZHENG Xinhui SI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第11期1611-1630,共20页
The effects of a velocity slip and an external magnetic field on the flow of biomagnetic fluid(blood)through a stenosed bifurcated artery are investigated by using ANSYS FLUENT.Blood is regarded as a non-Newtonian pow... The effects of a velocity slip and an external magnetic field on the flow of biomagnetic fluid(blood)through a stenosed bifurcated artery are investigated by using ANSYS FLUENT.Blood is regarded as a non-Newtonian power-law fluid,and the magnetization and electrical conductivity are considered in the mathematical model.The no-slip condition is replaced by the first-order slip condition.The slip boundary condition and magnetic force are compiled in the solver by the user-defined function(UDF).Numerical solutions are obtained by the finite volume method based on a nonuniform grid structure.The accuracy and efficiency of the solver are verified through a comparison with the literature.The results are presented graphically for different parameter values,and the effects of the magnetic number,the magnetic source position,the vascular obstruction ratio,the slip parameter,and the power-law index on the flow and temperature fields are illustrated. 展开更多
关键词 power-law fluid biomagnetic fluid magnetic field velocity slip stenosed bifurcated artery
下载PDF
Shear-augmented solute dispersion during drug delivery for three-layer flow through microvessel under stress jump and momentum slip-Darcy model
19
作者 G.BASHAGA S.SHAW 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期901-914,共14页
Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug p... Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant. 展开更多
关键词 shear-augmented dispersion drug delivery Darcy model Herschel-Bulkley fluid stress-jump and velocity slip
下载PDF
Hydrothermal analysis of hybrid nanofluid flow on a vertical plate byconsidering slip condition
20
作者 M.R.Zangooee Kh.Hosseinzadeh D.D.Ganji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期306-314,共9页
Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer.The influence of velocity and temperature slip parameter and nanoparticls’(NPs’)volume fraction on a... Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer.The influence of velocity and temperature slip parameter and nanoparticls’(NPs’)volume fraction on a vertical plate in the existence of suction has been explored in this work.The investigation’s controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications.Equations were then solved employing the fifth-order Runge-Kutta method.The skin coefficient of friction,temperature,and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%.Furthermore,a rise in the temperature slip variable was linked to a drop in the Nusselt number(heat transfer).The Nusselt number increased 0.15%and 5.63%respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%.Furthermore,an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%,while inflation in the velocity slip from 0 to 5 was associated with a decline in the x-direction skin friction coefficient 95%. 展开更多
关键词 Hybrid nanofluid Stagnation flow velocity slip Temperature slip
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部