期刊文献+
共找到12,151篇文章
< 1 2 250 >
每页显示 20 50 100
Exploration of the coupled lattice Boltzmann model based on a multiphase field model:A study of the solid-liquid-gas interaction mechanism in the solidification process
1
作者 朱昶胜 王利军 +2 位作者 高梓豪 刘硕 李广召 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期638-648,共11页
A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubb... A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubbles,and the effects of different temperatures,anisotropic strengths and tilting angles on the solidified organization of the SCN-0.24wt.%butanedinitrile alloy during the solidification process.The model adopts a multiphase field model to simulate the growth of dendrites,calculates the growth motions of dendrites based on the interfacial solute equilibrium;and adopts a lattice Boltzmann model(LBM)based on the Shan-Chen multiphase flow to simulate the growth and motions of bubbles in the liquid phase,which includes the interaction between solid-liquid-gas phases.The simulation results show that during the directional growth of columnar dendrites,bubbles first precipitate out slowly at the very bottom of the dendrites,and then rise up due to the different solid-liquid densities and pressure differences.The bubbles will interact with the dendrite in the process of flow migration,such as extrusion,overflow,fusion and disappearance.In the case of wide gaps in the dendrite channels,bubbles will fuse to form larger irregular bubbles,and in the case of dense channels,bubbles will deform due to the extrusion of dendrites.In the simulated region,as the dendrites converge and diverge,the bubbles precipitate out of the dendrites by compression and diffusion,which also causes physical phenomena such as fusion and spillage of the bubbles.These results reveal the physical mechanisms of bubble nucleation,growth and kinematic evolution during solidification and interaction with dendrite growth. 展开更多
关键词 multiphase field model lattice Boltzmann model(LBM) Shan-Chen multiphase flow solidification organization
下载PDF
Comparative study on phase transition behaviors of fractional molecular field theory and random-site Ising model
2
作者 刘婷玉 赵薇 +3 位作者 王涛 安小冬 卫来 黄以能 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期536-541,共6页
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver... Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation. 展开更多
关键词 phase transition molecular field theory Ising model Monte Carlo
下载PDF
Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
3
作者 王文 徐涛 +1 位作者 张仪 the J-TEXT team 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期545-551,共7页
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr... An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature. 展开更多
关键词 plasma responses drift-MHD model error field penetration
下载PDF
αDecay in extreme laser fields within a deformed Gamow-like model
4
作者 Qiong Xiao Jun-Hao Cheng +3 位作者 Yang-Yang Xu You-Tian Zou Jun-Gang Deng Tong-Pu Yu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期131-144,共14页
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh... In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population. 展开更多
关键词 αDecay Deformed Gamow-like model HALF-LIVES Extreme laser field Penetration probability
下载PDF
Bifurcation Analysis Reveals Solution Structures of Phase Field Models
5
作者 Xinyue Evelyn Zhao Long-Qing Chen +1 位作者 Wenrui Hao Yanxiang Zhao 《Communications on Applied Mathematics and Computation》 EI 2024年第1期64-89,共26页
The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifur... The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems.Here,we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models.Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions.To elucidate the idea,we apply this analytical approach to three representative phase field equations:the Allen-Cahn equation,the Cahn-Hilliard equation,and the Allen-Cahn-Ohta-Kawasaki system.The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method. 展开更多
关键词 Phase field modeling BIFURCATIONS Multiple solutions
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
6
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress
7
作者 韩智云 李庆民 +3 位作者 李俊科 王梦溪 任瀚文 邹亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期114-124,共11页
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte... In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment. 展开更多
关键词 dielectric discharge breakdown high frequency power electronic transformer polyimide nanocomposites phase field model
下载PDF
Innovative Practice of Intelligent Business Models in the Field of Communication
8
作者 Yi Yin Chenggang Li 《Intelligent Information Management》 2024年第4期147-156,共10页
As a service format to meet spiritual needs, fashion culture industry is often synchronized in its creation, production, dissemination, display and consumption. In order to explore how artificial intelligence provides... As a service format to meet spiritual needs, fashion culture industry is often synchronized in its creation, production, dissemination, display and consumption. In order to explore how artificial intelligence provides technical means, platforms, channels and space for intelligent formats in the field of communication, and how to provide intelligent services for cultural creation, communication, display and consumption. This paper discusses the application and innovation of artificial intelligence in all aspects of communication field, analyzes the problems and puts forward corresponding countermeasures and suggestions. 展开更多
关键词 Communication field Intelligent Business Format model Innovation
下载PDF
Temperature field model in surface grinding: a comparative assessment 被引量:1
9
作者 Min Yang Ming Kong +10 位作者 Changhe Li Yunze Long Yanbin Zhang Shubham Sharma Runze Li Teng Gao Mingzheng Liu Xin Cui Xiaoming Wang Xiao Ma Yuying Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期314-373,共60页
Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increas... Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity. 展开更多
关键词 grinding temperature uniform continuous temperature field nonuniform discontinuous temperature field heat source distribution model grinding heat distribution coefficient model convective heat transfer coefficient model
下载PDF
The behavior of a lithospheric magnetization and magnetic field model 被引量:1
10
作者 PengFei Liu Yi Jiang +1 位作者 Qing Yan Ann MHirt 《Earth and Planetary Physics》 EI CSCD 2023年第1期66-73,共8页
The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anoma... The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anomalies with a broad spectrum of sizes and intensities,which arise from geological and tectonic features.The lithospheric magnetic field is known from surface observations,and on larger scales from above-surface measurements.The increase in recent decades of satellites dedicated to measuring the Earth’s magnetic field has improved significantly our models of the Earth’s magnetic environment.Based on these increasing observations,a number of comprehensive field models have been constructed,some of which focus solely on the lithosphere,such as the MF model series.We present a map of lithospheric magnetic anomalies at 400 km altitude,based on a vertically integrated magnetization model.This height was chosen because it is the expected orbital altitude of the Macao Science Satellite-1(MSS-1)mission.The model presented herein indicates that the amplitude of the lithospheric anomalies at 400 km altitude is between-14.8 n T and 18.2 n T.This information is useful because it provides a reference for the lithospheric source of the Earth’s magnetic field that contributes to the magnetic measurements made from satellite instruments.The low inclination orbit of the MSS-1 mission will provide information that is sensitive to lateral variation within the lithosphere;these variations arise from plate tectonic features with longitudinal extent.In conclusion,the new MSS-1mission will provide valuable information in detecting compositional variations in the lithosphere,and in delineating large-scale geological structures. 展开更多
关键词 vertically integrated magnetization lithospheric magnetic field field model MSS-1
下载PDF
Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method 被引量:9
11
作者 ZHANG Dawei LI Yongtang +1 位作者 FU Jianhua ZHENG Quangang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期688-695,共8页
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o... Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling. 展开更多
关键词 external spline cold rolling slip-line field method rolling force rolling moment
下载PDF
Study of the geomagnetic field's regional gradients in Chinese continent using three-dimensional surface Spline model
12
作者 Yan Feng YiJun Li +3 位作者 JinYan Zhang Shuang Liu Abbas Nasir Ya Huang 《Earth and Planetary Physics》 EI CSCD 2023年第1期74-83,共10页
We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the p... We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory. 展开更多
关键词 geomagnetic field main field gradients regional model three-dimensional modeling
下载PDF
Time-varying gravity field model of Sichuan-Yunnan region based on the equivalent mass source model
13
作者 Xiaozhen Hou Shi Chen +2 位作者 Linhai Wang Jiancheng Han Dong Ma 《Geodesy and Geodynamics》 EI CSCD 2023年第6期566-572,共7页
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity meas... High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region. 展开更多
关键词 Gravity change Equivalent source model Time-varying gravity model Gravity field INVERSION
下载PDF
GPU parallel computation of dendrite growth competition in forced convection using the multi-phase-field-lattice Boltzmann model
14
作者 高梓豪 朱昶胜 王苍龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期530-547,共18页
A graphics-processing-unit(GPU)-parallel-based computational scheme is developed to realize the competitive growth process of converging bi-crystal in two-dimensional states in the presence of forced convection condit... A graphics-processing-unit(GPU)-parallel-based computational scheme is developed to realize the competitive growth process of converging bi-crystal in two-dimensional states in the presence of forced convection conditions by coupling a multi-phase field model and a lattice Boltzmann model.The elimination mechanism in the evolution process is analyzed for the three conformational schemes constituting converging bi-crystals under pure diffusion and forced convection conditions,respectively,expanding the research of the competitive growth of columnar dendrites under melt convection conditions.The results show that the elimination mechanism for the competitive growth of converging bi-crystals of all three configurations under pure diffusion conditions follows the conventional Walton-Chalmers model.When there is forced convection with lateral flow in the liquid phase,the anomalous elimination phenomenon of unfavorable dendrites eliminating favorable dendrites occurs in the grain boundaries.In particular,the anomalous elimination phenomenon is relatively strong in conformation 1 and conformation 2 when the orientation angle of unfavorable dendrites is small,and relatively weak in conformation 3.Moreover,the presence of convection increases the tip growth rate of both favorable and unfavorable dendrites in the grain boundary.In addition,the parallelization of the multi-phase-field-lattice Boltzmann model is achieved by designing the parallel computation of the model on the GPU platform concerning the computerunified-device-architecture parallel technique,and the results show that the parallel computation of this model based on the GPU has absolute advantages,and the parallel acceleration is more obvious as the computation area increases. 展开更多
关键词 multi-phase field model GPU grain competition growth lattice Boltzmann model
下载PDF
Modified Model of Crack Tip Stress Field Considering Dislocation Slip Accumulation and Crack Tip Blunting
15
作者 Jian Li Bing Yang +4 位作者 Shuancheng Wang M.N.James Shoune Xiao Tao Zhu Guangwu Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期327-340,共14页
This study uses the digital image correlation technique to measure the crack tip displacement field at various crack lengths in U71MnG rail steel,and the interpolated continuous displacement field was obtained by fitt... This study uses the digital image correlation technique to measure the crack tip displacement field at various crack lengths in U71MnG rail steel,and the interpolated continuous displacement field was obtained by fitting with a back propagation(BP)neural network.The slip and stacking of dislocations affect crack initiation and growth,leading to changes in the crack tip field and the fatigue characteristics of crack growth.The Christopher-James-Patterson(CJP)model describes the elastic stress field around a growing fatigue crack that experiences plasticity-induced shielding.In the present work,this model is modified by including the effect of the dislocation field on the plastic zone of the crack tip and hence on the elastic field by introducing a plastic flow factorρ,which represents the amount of blunting of the crack tip.The Levenberg-Marquardt(L-M)nonlinear least squares method was used to solve for the stress intensity factors.To verify the accuracy of this modified CJP model,the theoretical and experimental plastic zone errors before and after modification were compared,and the variation trends of the stress intensity factors and the plastic flow factorρwere analysed.The results show that the CJP model,with the introduction ofρ,exhibits a good blunting trend.In the low plasticity state,the modified model can accurately describe the experimental plastic zone,and the modified stress intensity factors are more accurate,which proves the effectiveness of dislocation correction.This plastic flow correction provides a more accurate crack tip field model and improves the CJP crack growth relationship. 展开更多
关键词 Digital image correlation Back propagation neural network Plastic zone CJP model Dislocation field
下载PDF
ALMOST SURELY TIME-SPACE INTERMITTENCY FOR THE PARABOLIC ANDERSON MODEL WITH A LOG-CORRELATED GAUSSIAN FIELD
16
作者 吕阳阳 李贺宇 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期608-639,共32页
In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arisi... In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics. 展开更多
关键词 spatial asymptotics quenched long-time asymptotics parabolic Anderson model log-correlated Gaussian field Feynman-Kac formula
下载PDF
Simulation for MSS-2 low-perigee elliptical orbit satellites:an example of lithospheric magnetic field modelling
17
作者 Yi Jiang Nils Olsen +1 位作者 JiaMing Ou Qing Yan 《Earth and Planetary Physics》 EI CSCD 2023年第1期151-160,共10页
A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observati... A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observations in the post-Swarm period,focusing especially on collecting data that will provide a global,three-dimensional survey of the geomagnetic field.In this paper,we present a simulation of two years of orbits(2020.01.01-2022.01.01)of two satellites(tentatively denoted as MSS-2)that are constellated in elliptical(200×5,300 km)low-perigee orbits.By comparing error variances of Gauss coefficients,we investigate the sensitivity of lithospheric magnetic field modelling to data collected from various satellite orbits,including a near circular reference orbit of 300×350km,and elliptical orbit of 180×5,300 km,220×5,300 km,200×3,000 km and 200×1,500 km.We find that in two years the two MSS-2 satellites can collect 35,000 observations at altitude below 250 km,data that will be useful in advancing the quality of lithospheric magnetic field modelling;this number of observations reflects the fact that only 4.5%of the flight time of these satellites will be below250 km(just 6.4%of their flight time below 300 km).By combining observations from the MSS-2 satellites’elliptical orbits of 200×5,300km with observations from a circular reference orbit,the variance of the geomagnetic model can be reduced by a factor of 285 at spherical harmonic degree n=200 and by a factor of 1,300 at n=250.The planned lower perigee of their orbits allows the new satellites to collect data at unprecedentedly lower altitudes,thus dramatically improving the spatial resolution of satellite-derived lithospheric field models,(up to 80%at n=150).In addition,lowering the apogee increases the time interval during which the satellites fly at near-Earth altitudes,thus improving the model predictions at all spherical harmonic degrees(around 52%-62%at n=150).The upper limit of the expected improvement to the field model at the orbital apogee is not as good as at the perigee.However,data from the MSS-1 orbit can help fill the gap between data from the MSS-2 orbits and from the circular reference orbit for the low-degree part of the model.The feasibility of even lower-altitude flight requires further discussion with satellite engineers. 展开更多
关键词 elliptical orbit satellite orbit simulation lithosphere field modelling spherical harmonics
下载PDF
The Complex Field Theory and Mass Formation—An Alternative Model to Higgs Mechanism
18
作者 Hossin Abdeldayem 《Journal of Modern Physics》 CAS 2023年第5期562-572,共11页
The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe... The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere. 展开更多
关键词 Quantum field Theory Complex field Theory Standard model Higgs Mechanism BOSONS FERMIONS
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
19
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
Energy-Efficient Approaches for a Machine Tool Building in a University through Field Measurement and Energy Modelling
20
作者 Kusnandar Win-Jet Luo +2 位作者 Indra Permana Fu-Jen Wang Gantulga Bayarkhuu 《Energy Engineering》 EI 2023年第6期1387-1399,共13页
The heating,ventilating,and air conditioning(HVAC)system consumes nearly 50%of the building’s energy,especially in Taiwan with a hot and humid climate.Due to the challenges in obtaining energy sources and the negativ... The heating,ventilating,and air conditioning(HVAC)system consumes nearly 50%of the building’s energy,especially in Taiwan with a hot and humid climate.Due to the challenges in obtaining energy sources and the negative impacts of excessive energy use on the environment,it is essential to employ an energy-efficient HVAC system.This study conducted the machine tools building in a university.The field measurement was carried out,and the data were used to conduct energymodelling with EnergyPlus(EP)in order to discover some improvements in energy-efficient design.The validation between fieldmeasurement and energymodelling was performed,and the error rate was less than 10%.The following strategies were proposed in this study based on several energy-efficient approaches,including room temperature settings,chilled water supply temperature settings,chiller coefficient of performance(COP),shading,and building location.Energy-efficient approaches have been evaluated and could reduce energy consumption annually.The results reveal that the proposed energy-efficient approaches of room temperature settings(3.8%),chilled water supply temperature settings(2.1%),chiller COP(5.9%),using shading(9.1%),and building location(3.0%),respectively,could reduce energy consumption.The analysis discovered that using a well-performing HVAC system and building shading were effective in lowering the amount of energy used,and the energy modelling method could be an effective and satisfactory tool in determining potential energy savings. 展开更多
关键词 ENERGY-EFFICIENT energy modelling field measurement BEMS machine tools building
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部