Assuming the pores in a porous solid to be slit-shaped,according to the principle of surface chemical thermody-namics,an equation for the calculation of pore size fromthe desorption branch of the isotherm of physical ...Assuming the pores in a porous solid to be slit-shaped,according to the principle of surface chemical thermody-namics,an equation for the calculation of pore size fromthe desorption branch of the isotherm of physical adsorp-tion of nitrogen on the porous solid at liquid nitrogentemperature is derived.The calculation results obtainedby different methods,namely,the classical method,BBmethod and the method of this paper,are compared.Comparison shows that the pore sizes d_T and d_H calculat-ed by the method of this paper and BB method respec-tively are larger than the pore size d_c calculated by theclassical method in the range 0【p/p_s【1;d_T】d_Hatp/p_s【0.71 and d_H】d_T at p/p_s】0.71;The results byBB method and the method of this paper tend to be thesame as that by the classical method while p/p_s ap-proaches 1.展开更多
The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and ...The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and CH 4-N 2.The Gibbs ensemble Monte Carlo(GEMC) simulation results indicate that the confinement and the solid-fluid interaction have significant influences on the vapor-liquid equilibrium properties.The confinement and the strength of the solid-fluid interaction make the p-x i phase diagram move to higher pressure regions.They also make the two-phase region become narrower for each binary mixture.The strength of the solid-fluid interactions can cause increases in the coexistence liquid and vapor densities,and cause the decrease of the relative volatility and the vaporization enthalpy for the systems studied.As the pore width is decreased,the two-phase region of the binary mixture becomes narrower.展开更多
文摘Assuming the pores in a porous solid to be slit-shaped,according to the principle of surface chemical thermody-namics,an equation for the calculation of pore size fromthe desorption branch of the isotherm of physical adsorp-tion of nitrogen on the porous solid at liquid nitrogentemperature is derived.The calculation results obtainedby different methods,namely,the classical method,BBmethod and the method of this paper,are compared.Comparison shows that the pore sizes d_T and d_H calculat-ed by the method of this paper and BB method respec-tively are larger than the pore size d_c calculated by theclassical method in the range 0【p/p_s【1;d_T】d_Hatp/p_s【0.71 and d_H】d_T at p/p_s】0.71;The results byBB method and the method of this paper tend to be thesame as that by the classical method while p/p_s ap-proaches 1.
基金supported by National Natural Science Foundation of China (20876083,20736003)the Specialized Research Fund forthe Doctoral Program of Higher Education (20100002110024)Major State Basic Research Program of China (2009CB623404)
文摘The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and CH 4-N 2.The Gibbs ensemble Monte Carlo(GEMC) simulation results indicate that the confinement and the solid-fluid interaction have significant influences on the vapor-liquid equilibrium properties.The confinement and the strength of the solid-fluid interaction make the p-x i phase diagram move to higher pressure regions.They also make the two-phase region become narrower for each binary mixture.The strength of the solid-fluid interactions can cause increases in the coexistence liquid and vapor densities,and cause the decrease of the relative volatility and the vaporization enthalpy for the systems studied.As the pore width is decreased,the two-phase region of the binary mixture becomes narrower.