A silver nanoparticle(Ag NP) with good monodispersity was produced by a convenient method for reducing of Ag NO3 with N, N-dimethylacetamide in the presence of polyvinyl pyrrolidone(PVP) as the surface modification ag...A silver nanoparticle(Ag NP) with good monodispersity was produced by a convenient method for reducing of Ag NO3 with N, N-dimethylacetamide in the presence of polyvinyl pyrrolidone(PVP) as the surface modification agent. The shape and size of the Ag NP with reaction time were taken as variables. The surface plasmon band transition was monitored with reaction mixture time at different temperatures. The Ag NP crystallinity increases with the reaction time, and the reduction efficiency is very low when Ag NP solution is dealt at room temperature even after two days, while it is greatly improved at 160 °C only for 25 min. Ag NP modified by the as-synthesized PVP has a face-centered cubic crystalline structure, in which Ag NP could develop into a spherical morphology with a very narrow size distribution of 2-11 nm. The preparation provides a new reducing agent to form Ag NP with simpler operation and shorter time.展开更多
Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induc...Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties.However,for long-term vascular implant devices such as vascular stents,besides anticoagulation,also anti-inflammatory,anti-hyperplastic properties,and the ability to support endothelial repair,are desired.To meet these requirements,here,we immobilized silver nanoparticles(AgNPs)on the surface of TiO2 nanotubes(TiO2-NTs)to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties.The photo-functionalized TiO2-NTs showed protein-fouling resistance,causing the anticoagulant property and the ability to suppress cell adhesion.The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property.The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property,a strong inhibitory effect on smooth muscle cells(SMCs),and low toxicity to endothelial cells(ECs).The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs,and therefore has enormous potential in the field of cardiovascular implant devices.Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.展开更多
基金Project(126223)supported by Postdoctoral Fund of Central South University,ChinaProject(13JJ4102)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14A025)supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘A silver nanoparticle(Ag NP) with good monodispersity was produced by a convenient method for reducing of Ag NO3 with N, N-dimethylacetamide in the presence of polyvinyl pyrrolidone(PVP) as the surface modification agent. The shape and size of the Ag NP with reaction time were taken as variables. The surface plasmon band transition was monitored with reaction mixture time at different temperatures. The Ag NP crystallinity increases with the reaction time, and the reduction efficiency is very low when Ag NP solution is dealt at room temperature even after two days, while it is greatly improved at 160 °C only for 25 min. Ag NP modified by the as-synthesized PVP has a face-centered cubic crystalline structure, in which Ag NP could develop into a spherical morphology with a very narrow size distribution of 2-11 nm. The preparation provides a new reducing agent to form Ag NP with simpler operation and shorter time.
基金the National Natural Science Foundation of China(nos.31870958,31700821,and 81771988).
文摘Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties.However,for long-term vascular implant devices such as vascular stents,besides anticoagulation,also anti-inflammatory,anti-hyperplastic properties,and the ability to support endothelial repair,are desired.To meet these requirements,here,we immobilized silver nanoparticles(AgNPs)on the surface of TiO2 nanotubes(TiO2-NTs)to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties.The photo-functionalized TiO2-NTs showed protein-fouling resistance,causing the anticoagulant property and the ability to suppress cell adhesion.The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property.The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property,a strong inhibitory effect on smooth muscle cells(SMCs),and low toxicity to endothelial cells(ECs).The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs,and therefore has enormous potential in the field of cardiovascular implant devices.Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.