The dynamic stability of a quadruped robot trotting on slope was analyzed.Compared with crawl gait,trot gait can improve walking speed of quadruped robots.When a quadruped robot trots,each leg is in the alternate stat...The dynamic stability of a quadruped robot trotting on slope was analyzed.Compared with crawl gait,trot gait can improve walking speed of quadruped robots.When a quadruped robot trots,each leg is in the alternate state of swing phase or supporting phase,and two legs in the diagonal line are in the same phase.The feet in the supporting phase form a supporting region on the ground.When a quadruped robot walks on slope,the vertical distance from zero moment point(ZMP) to the supporting diagonal line is defined as ZMP offset distance.Whether this distance is less than the maximum offset distance or not,the stability of robot trotting on slope can be judged.The foot trajectory was planned with the sinusoidal function.Based on the kinematic analysis,the ZMP offset distance of quadruped robot under different slope angles,step length and step height was calculated,then the reasonable slope angle,step length and step height for quadruped robot trotting on slope to keep dynamic stability can be determined.On the other hand,the posture angle of quadruped robot should be controlled within the desired range.Computer simulations were executed to verify the theoretical analysis.The study will provide reference for determining reasonable step parameters of the quadruped robot.展开更多
An evaluation method for the seismic stability of embankment slope was presented based on catastrophe theory. Seven control factors, including internal frictional angle, cohesion force, slope height, slope angle, surf...An evaluation method for the seismic stability of embankment slope was presented based on catastrophe theory. Seven control factors, including internal frictional angle, cohesion force, slope height, slope angle, surface gradients, peak acceleration, and distance to fault were selected for analysis of multi-level objective decomposition. According to the normalization formula and the fuzzy subject function produced by combination of catastrophe theory and fuzzy math, a recursive calculation was carried out to obtain a catastrophic affiliated functional value, which can be used to evaluate the seismic stability of embankment slope. Fifteen samples were used to verify the effectiveness of this method. The results show that compared with the traditional quantitative method, the catastrophe progression owns higher accuracy and good application potential in predicting the seismic stability of embankment slope.展开更多
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘The dynamic stability of a quadruped robot trotting on slope was analyzed.Compared with crawl gait,trot gait can improve walking speed of quadruped robots.When a quadruped robot trots,each leg is in the alternate state of swing phase or supporting phase,and two legs in the diagonal line are in the same phase.The feet in the supporting phase form a supporting region on the ground.When a quadruped robot walks on slope,the vertical distance from zero moment point(ZMP) to the supporting diagonal line is defined as ZMP offset distance.Whether this distance is less than the maximum offset distance or not,the stability of robot trotting on slope can be judged.The foot trajectory was planned with the sinusoidal function.Based on the kinematic analysis,the ZMP offset distance of quadruped robot under different slope angles,step length and step height was calculated,then the reasonable slope angle,step length and step height for quadruped robot trotting on slope to keep dynamic stability can be determined.On the other hand,the posture angle of quadruped robot should be controlled within the desired range.Computer simulations were executed to verify the theoretical analysis.The study will provide reference for determining reasonable step parameters of the quadruped robot.
基金financially supported by the open research fund of Key Laboratory of Highway Engineering of Sichuan Province, Southwest Jiaotong University (No. LHTE009201109)
文摘An evaluation method for the seismic stability of embankment slope was presented based on catastrophe theory. Seven control factors, including internal frictional angle, cohesion force, slope height, slope angle, surface gradients, peak acceleration, and distance to fault were selected for analysis of multi-level objective decomposition. According to the normalization formula and the fuzzy subject function produced by combination of catastrophe theory and fuzzy math, a recursive calculation was carried out to obtain a catastrophic affiliated functional value, which can be used to evaluate the seismic stability of embankment slope. Fifteen samples were used to verify the effectiveness of this method. The results show that compared with the traditional quantitative method, the catastrophe progression owns higher accuracy and good application potential in predicting the seismic stability of embankment slope.