A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC....A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.展开更多
The Three Gorges Project of the Yangtze River is the largest hydropower-complex project under construction in the world. Under the largescale relocation projects, 2874 engineered slopes are formed along with the const...The Three Gorges Project of the Yangtze River is the largest hydropower-complex project under construction in the world. Under the largescale relocation projects, 2874 engineered slopes are formed along with the construction of new towns. In this paper, the cutting slopes are mainly soil slopes and rock slopes. Soil slopes include residual soil slopes, colluvial accumulation slopes, swelling soil slopes, and artificial earth fill slopes, etc. Rock slopes include blocky structure rock slopes, layer structure rock slopes, and clastic structure rock slopes, etc. Varied protection measures have been used for slope protection in the reservoir area including shotcrete concrete-anchor bars, frame beams, retaining walls, slope stabilizing piles, sheet-pile walls, anchorage anti-shear tunnels, flexible protection grids, and drainage, etc. Besides, slope deformation monitoring systems have been set up to monitor deformation failure and the stability state of slopes. The protection measures have guaranteed slope safety and maintained a harmony with the urban environment and surrounding landscape.展开更多
During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques...During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.展开更多
The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the p...The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.展开更多
The stability analysis of passive bolt-reinforced rock slopes under seismic loads is investigated within the framework of the kinematic approach of limit analysis theory.A pseudo-static method is adopted to account fo...The stability analysis of passive bolt-reinforced rock slopes under seismic loads is investigated within the framework of the kinematic approach of limit analysis theory.A pseudo-static method is adopted to account for the inertial forces induced in the rock mass by seismic events.The strength properties of the rock material are described by a modified Hoek-Brown strength criterion,whereas the passive bolts are modeled as bar-like inclusions that exhibit only resistance to tensile-compressive forces.Taking advantage of the ability to compute closed-form expressions for the support functions associated with the modified Hoek-Brown strength criterion,a rotational failure mechanism is implemented to derive rigorous lower bound estimates for the amount of reinforcement strength to prevent slope failure.The approach is then applied to investigating the effects of relevant geometry,strength and loading parameters in light of a preliminary parametric study.The accuracy of the approach is assessed by comparison of the lower bound estimates with finite element limit analysis solutions,thus emphasizing the ability of the approach to properly predict the stability conditions and to capture the essential features of deformation localization pattern.Finally,the extension of the approach to account for slipping at the interface between reinforcements and surrounding rock mass is outlined.展开更多
This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforceme...This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium(GLE) method.The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided.The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form.Furthermore,the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness.展开更多
In several parts of the world, disposal of waste materials such as fly ash is a great problem. Application of waste materials as structural fills in foundations is one of the best solutions to disposal problems, becau...In several parts of the world, disposal of waste materials such as fly ash is a great problem. Application of waste materials as structural fills in foundations is one of the best solutions to disposal problems, because wastes can be used in large volumes in such applications. There may be difficulty due to poor load-bearing capacity of fly ash, especially when footing rests on the top of the fly ash fill slope. Inclusion of polymeric reinforcements as horizontal sheets within the fill may be one of the most viable solutions to improving the load-bearing capacity of reinforced fly ash slope, and it is particularly important for the situations where foundations need to be located either on the top of a slope or on slope itself. The present work is aimed at investigating the efficacy of a single layer of reinforcement in improving the lo, ad-bearing capacity when it gets incorporated within the body of a model fly ash embankment slope. An increase in load bearing capacity due to the incorporation of reinforcement in the model slope was found by conducting laboratory tests. Experimental results were compared by numerical values obtained using software GEO5 and PLAXIS.展开更多
On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties.Besides, abundant landslides and slope failures were triggered in the most seriously hit ...On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties.Besides, abundant landslides and slope failures were triggered in the most seriously hit areas and caused disastrous damages to infrastructures and public facilities.Moreover, abundant unstable slopes caused by the quake have the potential to cause damages for a considerable long period of time.The variety of these slopes and the corresponding treatments are connected with the topographical and geological conditions of the sites.It is decided to document and identify some of these major slope instabilities caused by the earthquake and their treatments.The paper shows the condition of a road in Dujiangyan through in situ explorations.The case history showed significant implications to the reconstruction of the quake-hit regions and future disaster prevention and management works.展开更多
By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the ef...By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.展开更多
The engineering geology and hydrogeology in the southern slope of Chengmenshan copper mine are very complicated,because there is a soft-weak layer between two kinds of sandstones.Field investigations demonstrate that ...The engineering geology and hydrogeology in the southern slope of Chengmenshan copper mine are very complicated,because there is a soft-weak layer between two kinds of sandstones.Field investigations demonstrate that some instability problems might occur in the slope.In this research,the southern slope,which is divided into six sections(I-0,I-1,I-2,II-0,II-1 and II-2),is selected for slope stability analysis using limit equilibrium and numerical method.Stability results show that the values of factor of safety(FOS) of sections I-0,I-1 and I-2 are very low and slope failure is likely to happen.Therefore reinforcement subjected to seismic,water and weak layer according to sections were carried out to increase the factor of safety of the three sections,two methods were used;grouting with hydration of cement and water to increase the cohesion(c) and pre-stressed anchor.Results of reinforcement showed that factor of safety increased more than 1.15.展开更多
The vegetation geosynthetic reinforced slope is one of the new composite structures in civil engineering. It has a series of characteristics, such as low cost, convenient construction, optimal land utilization and...The vegetation geosynthetic reinforced slope is one of the new composite structures in civil engineering. It has a series of characteristics, such as low cost, convenient construction, optimal land utilization and flexible structure, and it has been widely used in hydraulic engineering, road, railway and harbor construction. The Three Gorges reservoir bank protection system is a challenging work. As the background, the interaction mechanism of soil and reinforced material has been studied. The test engineering is simulated by the numerical methods. The failure mechanism of the reinforced slope in the process is studied through analyzing the variation of the displacement, stress, plastic failure fields and factor of safety in the changing process of the water level. The reasonable evaluation of the protecting effect and bank slope stability is carried out. The research results could be used in the protective design and construction in the high slope in the Three Gorges reservoir region, and it also could provide reference to other protective engineerings in the littoral area.展开更多
基金Project 50492073 supported by National Natural Science Foundation of China
文摘A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.
基金supported by the Project of Scientific Research of High Cutting Slope Protection of the Third Stage Geological Hazards in Three Gorges Reservoir Area (Grant No.2008SXG01-5)State Council Three Gorges Project Construction Committee Executive Officesupported under the grant of TGRC201025 from the Three Gorges Research Center for geo-hazard, Ministry of Education, China
文摘The Three Gorges Project of the Yangtze River is the largest hydropower-complex project under construction in the world. Under the largescale relocation projects, 2874 engineered slopes are formed along with the construction of new towns. In this paper, the cutting slopes are mainly soil slopes and rock slopes. Soil slopes include residual soil slopes, colluvial accumulation slopes, swelling soil slopes, and artificial earth fill slopes, etc. Rock slopes include blocky structure rock slopes, layer structure rock slopes, and clastic structure rock slopes, etc. Varied protection measures have been used for slope protection in the reservoir area including shotcrete concrete-anchor bars, frame beams, retaining walls, slope stabilizing piles, sheet-pile walls, anchorage anti-shear tunnels, flexible protection grids, and drainage, etc. Besides, slope deformation monitoring systems have been set up to monitor deformation failure and the stability state of slopes. The protection measures have guaranteed slope safety and maintained a harmony with the urban environment and surrounding landscape.
基金This paper was financially supported by the Project 973 of Chinese National Program of Basic Research (No. 2002CB412701) the National Natural Science Foundation (No. 40502027)the Project of Innovation Program of Chinese Academy of Sciences (No. KZCX2-306).
文摘During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.
文摘The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.
基金financial support from Ecole des Ponts et Chaussées-ParisTech(France)the French Institute of Tunisia (French Embassy-Tunisia)Laboratoire de Génie Civil (ENIT) through project SSHN2015-ENPC/ENIT
文摘The stability analysis of passive bolt-reinforced rock slopes under seismic loads is investigated within the framework of the kinematic approach of limit analysis theory.A pseudo-static method is adopted to account for the inertial forces induced in the rock mass by seismic events.The strength properties of the rock material are described by a modified Hoek-Brown strength criterion,whereas the passive bolts are modeled as bar-like inclusions that exhibit only resistance to tensile-compressive forces.Taking advantage of the ability to compute closed-form expressions for the support functions associated with the modified Hoek-Brown strength criterion,a rotational failure mechanism is implemented to derive rigorous lower bound estimates for the amount of reinforcement strength to prevent slope failure.The approach is then applied to investigating the effects of relevant geometry,strength and loading parameters in light of a preliminary parametric study.The accuracy of the approach is assessed by comparison of the lower bound estimates with finite element limit analysis solutions,thus emphasizing the ability of the approach to properly predict the stability conditions and to capture the essential features of deformation localization pattern.Finally,the extension of the approach to account for slipping at the interface between reinforcements and surrounding rock mass is outlined.
基金funded by the Key Industrial Science and Technology Project of Shaanxi Province(No.2015GY149)the Scientific Project funded by the Ministry of Housing and Urban-Rural Development of the People’s Republic of China Council(No.2015-K2-008)
文摘This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium(GLE) method.The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided.The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form.Furthermore,the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness.
文摘In several parts of the world, disposal of waste materials such as fly ash is a great problem. Application of waste materials as structural fills in foundations is one of the best solutions to disposal problems, because wastes can be used in large volumes in such applications. There may be difficulty due to poor load-bearing capacity of fly ash, especially when footing rests on the top of the fly ash fill slope. Inclusion of polymeric reinforcements as horizontal sheets within the fill may be one of the most viable solutions to improving the load-bearing capacity of reinforced fly ash slope, and it is particularly important for the situations where foundations need to be located either on the top of a slope or on slope itself. The present work is aimed at investigating the efficacy of a single layer of reinforcement in improving the lo, ad-bearing capacity when it gets incorporated within the body of a model fly ash embankment slope. An increase in load bearing capacity due to the incorporation of reinforcement in the model slope was found by conducting laboratory tests. Experimental results were compared by numerical values obtained using software GEO5 and PLAXIS.
基金supported by the 973 Program of China (Grant No. 2008CB425803the Open Fund of the Key Laboratory of Marine Geology and Environment, China Academy of Sciences (Grant No. MGE2008KG04)the Open Fund of the Key Laboratory of Mountain Hazards and Surface Process, CAS.
文摘On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties.Besides, abundant landslides and slope failures were triggered in the most seriously hit areas and caused disastrous damages to infrastructures and public facilities.Moreover, abundant unstable slopes caused by the quake have the potential to cause damages for a considerable long period of time.The variety of these slopes and the corresponding treatments are connected with the topographical and geological conditions of the sites.It is decided to document and identify some of these major slope instabilities caused by the earthquake and their treatments.The paper shows the condition of a road in Dujiangyan through in situ explorations.The case history showed significant implications to the reconstruction of the quake-hit regions and future disaster prevention and management works.
基金Funded by the National Natural Science Foundation of China(41372289)the Shandong Province Higher Educational Science and Technology Program(12LH03)+1 种基金the China's Post-doctoral Science Fund(2012M521365)the SDUST Research Fund
文摘By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.
基金support of Jiangxi Copper Company Limited (Chengmenshan Copper Mine)China Nerin Engineering Co.,Ltd.supported by the National Natural Science Foundation of China (No.11372363)
文摘The engineering geology and hydrogeology in the southern slope of Chengmenshan copper mine are very complicated,because there is a soft-weak layer between two kinds of sandstones.Field investigations demonstrate that some instability problems might occur in the slope.In this research,the southern slope,which is divided into six sections(I-0,I-1,I-2,II-0,II-1 and II-2),is selected for slope stability analysis using limit equilibrium and numerical method.Stability results show that the values of factor of safety(FOS) of sections I-0,I-1 and I-2 are very low and slope failure is likely to happen.Therefore reinforcement subjected to seismic,water and weak layer according to sections were carried out to increase the factor of safety of the three sections,two methods were used;grouting with hydration of cement and water to increase the cohesion(c) and pre-stressed anchor.Results of reinforcement showed that factor of safety increased more than 1.15.
文摘The vegetation geosynthetic reinforced slope is one of the new composite structures in civil engineering. It has a series of characteristics, such as low cost, convenient construction, optimal land utilization and flexible structure, and it has been widely used in hydraulic engineering, road, railway and harbor construction. The Three Gorges reservoir bank protection system is a challenging work. As the background, the interaction mechanism of soil and reinforced material has been studied. The test engineering is simulated by the numerical methods. The failure mechanism of the reinforced slope in the process is studied through analyzing the variation of the displacement, stress, plastic failure fields and factor of safety in the changing process of the water level. The reasonable evaluation of the protecting effect and bank slope stability is carried out. The research results could be used in the protective design and construction in the high slope in the Three Gorges reservoir region, and it also could provide reference to other protective engineerings in the littoral area.