期刊文献+
共找到3,512篇文章
< 1 2 176 >
每页显示 20 50 100
Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized Hoek-Brown criterion 被引量:9
1
作者 A.Karrech X.Dong +3 位作者 M.Elchalakani H.Basarir M.A.Shahin K.Regenauer-Lieb 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期237-245,共9页
The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may j... The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may jeopardize profitability in the context of open pit mining.Numerical methods such as finite element and discrete element modelling are instrumental to identify specific zones of stability,but they remain approximate and do not pinpoint the critical factors that influence stability without extensive parametric studies.A large number of degrees of freedom and input parameters may make the outcome of numerical modelling insufficient compared to analytical solutions.Existing analytical approaches have not tackled the stability of slopes using non-linear plasticity criteria and threedimensional failure mechanisms.This paper bridges this gap by using the yield design theory and the Hoek-Brown criterion.Moreover,the proposed model includes the effect of seismic forces,which are not always taken into account in slope stability analyses.The results are presented in the form of rigorous mathematical expressions and stability charts involving the loading conditions and the rock mass properties emanating from the plasticity criterion. 展开更多
关键词 three-dimensional slope Seismic stability Generalized Hoek-Brown criterion Open pit
下载PDF
Three-dimensional stability analysis of anisotropic and non-homogeneous slopes using limit analysis 被引量:6
2
作者 韩长玉 陈锦剑 +1 位作者 夏小和 王建华 《Journal of Central South University》 SCIE EI CAS 2014年第3期1142-1147,共6页
A method of three-dimensional loaded slope stability for anisotropic and nonhomogeneous slopes was presented based on the upper-bound theorem of the limit analysis approach. The approach can be considered as a modific... A method of three-dimensional loaded slope stability for anisotropic and nonhomogeneous slopes was presented based on the upper-bound theorem of the limit analysis approach. The approach can be considered as a modification and extension of the solutions. The influences of friction angle, anisotropy factor, nonhomogeneous factor, slope angle, ratio of width to depth, and load on the slope crest were investigated. The results show that solutions are suitable to deal with the purely cohesive soils and frictional/cohesive soils, isotropic and anisotropic, homogeneous and nonhomogeneous, loaded and unloaded cases. 展开更多
关键词 stability ANISOTROPY limit analysis loaded slope nonhomogeneous slope
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:2
3
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis slope stability Himalayan road Static and dynamic conditions
下载PDF
Three-dimensional stability calculation method for high and large composite slopes formed by mining stope and inner dump in adjacent open pits
4
作者 Zuchao Liang Dong Wang +4 位作者 Guanghe Li Guangyu Sun Mingyu Yu Dong Xia Chunjian Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期507-520,共14页
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi... The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis. 展开更多
关键词 Composite slope Destabilization mechanism 3D mechanical effect three-dimensional stability Coordinated development distance
下载PDF
Three-dimensional numerical analysis of plant-soil hydraulic interactions on pore water pressure of vegetated slope under different rainfall patterns
5
作者 Haowen Guo Charles Wang Wai Ng Qi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3696-3706,共11页
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev... Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient. 展开更多
关键词 Root-soil interactions Rainfall patterns slope stability three-dimensional(3D)
下载PDF
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
6
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope slope stability analysis Rainfall effect Strength reduction
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
7
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
THREE-DIMENSIONAL SLOPE STABILITY ANALYSIS BASED ON NONLINEAR FAILURE ENVELOPE 被引量:1
8
作者 JiangJingcai YamagamiTakuo BakerRafael 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2003年第6期1017-1023,共7页
The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spen... The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method hich satisfies boty force equilibrium and moment equilibrium.Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope,Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained(CU)triaxial compression tests for compacted Israeli clay.Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors. 展开更多
关键词 岩石力学 非线性 包络线 边坡 稳定性
下载PDF
Simulation analysis on three-dimensional slope failure under different conditions 被引量:9
9
作者 张科 曹平 +2 位作者 刘紫曜 胡惠华 龚道平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2490-2502,共13页
The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditi... The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method. 展开更多
关键词 three-dimensional slope slope stability three-dimensional effect strength reduction method failure mechanism
下载PDF
Undrained Stability Analysis of Three-Dimensional Rectangular Trapdoor in Clay 被引量:1
10
作者 YIN Xiaojun XIE Jun 《Journal of Donghua University(English Edition)》 EI CAS 2020年第4期334-339,共6页
A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analy... A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analysis theory.The soil where the trapdoors are located is assumed to be a perfectly plastic model with a Tresca yield criterion.Block analysis technique is employed to investigate the collapse of 3DRT.The model is divided into five different block types and added up to ten rigid blocks.According to the law of conservation of energy,the critical stability ratios of 3DRT are obtained through a search proceeding.The results of upper bound solution for 3DRT are given,and three trapdoor models with depth various are discussed during the application in the stability analysis of square trapdoors.The critical stability ratios can be used in the design of underground excavation and support force. 展开更多
关键词 three-dimensional rectangular trapdoor upper bound solution stability ratio rigid block block analysis technique
下载PDF
Early warning system for shallow landslides using rainfall threshold and slope stability analysis 被引量:13
11
作者 Shruti Naidu K.S.Sajinkumar +3 位作者 Thomas Oommen V.J.Anuja Rinu A.Samuel C.Muraleedharan 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1871-1882,共12页
A combined cluster and regression analysis were performed for the first time to identify rainfall threshold that triggers landslide events in Amboori, Kerala, India. Amboori is a tropical area that is highly vulnerabl... A combined cluster and regression analysis were performed for the first time to identify rainfall threshold that triggers landslide events in Amboori, Kerala, India. Amboori is a tropical area that is highly vulnerable to landslides. The 2, 3, and 5-day antecedent rainfall data versus daily rainfall was clustered to identify a cluster of critical events that could potentially trigger landslides. Further, the cluster of critical events was utilized for regression analysis to develop the threshold equations. The 5-day antecedent(xvariable) vs. daily rainfall(y-variable) provided the best fit to the data with a threshold equation of y = 80.7-0.1981 x. The intercept of the equation indicates that if the 5-day antecedent rainfall is zero, the minimum daily rainfall needed to trigger the landslide in the Amboori region would be 80.7 mm. The negative coefficient of the antecedent rainfall indicates that when the cumulative antecedent rainfall increases, the amount of daily rainfall required to trigger monsoon landslide decreases. The coefficient value indicates that the contribution of the 5-day antecedent rainfall is~20% to the landslide trigger threshold. The slope stability analysis carried out for the area, using Probabilistic Infinite Slope Analysis Model(PISA-m), was utilized to identify the areas vulnerable to landslide in the region. The locations in the area where past landslides have occurred demonstrate lower Factors of Safety(FS) in the slope stability analysis. Thus, rainfall threshold analysis together with the FS values from slope stability can be suitable for developing a simple, cost-effective, and comprehensive early-warning system for shallow landslides in Amboori and similar regions. 展开更多
关键词 LANDSLIDE Cluster analysis RAINFALL THRESHOLD analysis Factor of safety slope stability analysis PISA-m
下载PDF
Probabilistic approach for open pit bench slope stability analysis——A mine case study 被引量:10
12
作者 Christian Obregon Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期629-640,共12页
The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a re... The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a result,structurally-controlled failures(e.g.planar,wedge or toppling)are most likely to occur.The probabilistic approach offers a major advantage over the traditional deterministic method in that it accounts for the different degrees of variability and uncertainty often encountered in rock properties.This paper presents a bench slope stability assessment for an open pit mine in Peru using a probabilistic-based approach by coupling a kinematic analysis based on stereographic projection techniques followed by a kinetic analysis by means of the limit equilibrium method.Finally,these two probabilities are combined to provide an overall measure of the probability of failure(PoF)of the bench slope system.The case study is characterized by significant scatter in the geometrical and mechanical properties of the joints.Extensive surface mapping was conducted at 36 different sites following the ISRM suggested procedures.Several direct shear tests were carried out.It is shown that by combining field and laboratory measurements and engineering judgment,the probability density functions(PDF)of the discontinuity parameters can be obtained.These are then used in a Monte Carlo simulation process to compute both kinematic and kinetic probabilities of failure.The overall probability of failure aims to provide the design engineer with a tool to critically evaluate the bench performance from a geotechnical risk perspective and to provide a basis for future bench design optimization. 展开更多
关键词 MINE safety Rock slope stability KINEMATIC analysis Probability of failure LIMIT EQUILIBRIUM analysis Case study
下载PDF
Rock-soil slope stability analysis by two-phase random media and finite elements 被引量:8
13
作者 Yong Liu Huawen Xiao +2 位作者 Kai Yao Jun Hu Hong Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1649-1655,共7页
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul... To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer. 展开更多
关键词 slopeS stability Numerical computation STATISTICAL analysis FINITE-ELEMENT modelling Random FIELDS Monte-Carlo simulations
下载PDF
Combined influence of nonlinearity and dilation on slope stability evaluated by upper-bound limit analysis 被引量:7
14
作者 TANG Gao-peng ZHAO Lian-heng +1 位作者 LI Liang CHEN Jing-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1602-1611,共10页
The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soi... The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soil blocks with the nonlinear Mohr–Coulomb failure criterion and nonassociated flow rule.The multipoint tangent(multi-tangent) technique was used to analyze the slope stability by linearizing the nonlinear failure criterion.A general expression for the slope safety factor was derived based on the virtual work principle and the strength reduction technique,and the global slope safety factor can be obtained by the optimization method of nonlinear sequential quadratic programming.The results show better agreement with previous research result when the nonlinear failure criterion reduces to a linear failure criterion or the non-associated flow rule reduces to an associated flow rule,which demonstrates the rationality of the presented method.Slope safety factors calculated by the multi-tangent inclined-slices technique were smaller than those obtained by the traditional single-tangent inclined-slices technique.The results show that the multi-tangent inclined-slices technique is a safe and effective method of slope stability limit analysis.The combined effect of nonlinearity and dilation on slope stability was analyzed,and the parameter analysis indicates that nonlinearity and dilation have significant influence on the result of slope stability analysis. 展开更多
关键词 slope stability analysis nonlinear failure criterion non-associated flow rule multipoint TANGENT technique upper-bound limit analysis THEOREM
下载PDF
Three-dimensional analysis of slopes reinforced with piles 被引量:8
15
作者 高玉峰 叶茂 张飞 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2322-2327,共6页
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of... Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes. 展开更多
关键词 three-dimensional rotational failure mechanism stability of slopes limit analysis LANDSLIDES PILES
下载PDF
Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique 被引量:24
16
作者 赵炼恒 李亮 +2 位作者 杨峰 罗强 刘项 《Journal of Central South University》 SCIE EI CAS 2010年第4期836-844,共9页
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it... Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope. 展开更多
关键词 nonlinear failure criterion strength reduction method upper-bound theorem of limit analysis slope stability analysis factor of safety
下载PDF
Slope stability analysis under seismic load by vector sum analysis method 被引量:15
17
作者 Mingwei Guo Xiurun Ge Shuilin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期282-288,共7页
The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is... The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is employed in seismic stability analysis of a slope in this paper. Different from other conventional methods, the VSAM is proposed based on the vector characteristic of force and current stress state of the slope. The dynamic stress state of the slope at any moment under seismic load can he obtained by the DFEM, thus the factor of safety of the slope at any moment during earthquake can be easily obtained with the VSAM in consideration of the DFEM. Then, the global stability of the slope can be estimated on the basis of time-history curve of factor of safety and reliability theory. The VSAM is applied to a homogeneous slope under seismic load. The factor of safety of the slope is 1.30 under gravity only and the dynamic factor of safety under seismic load is 1.21. The calculating results show that the dynamic characteristics and stability state of the slope with input ground motion can be actually analyzed. It is believed that the VSAM is a feasible and practical approach to estimate the dynamic stability of slopes under seismic load. 展开更多
关键词 slope stability vector sum analysis method (VSAM) seismic load dynamic finite element method (DFEM)
下载PDF
Probabilistic seismic stability of three-dimensional slopes by pseudo-dynamic approach 被引量:7
18
作者 PAN Qiu-jing QU Xing-ru WANG Xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1687-1695,共9页
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl... Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach. 展开更多
关键词 seismic slope stability pseudo-dynamic analysis probabilistic analysis Monte-Carlo simulation failure probability three-dimensional slop
下载PDF
Couple analysis on strength reduction theory and rheological mechanism for slope stability 被引量:4
19
作者 刘子振 言志信 段建 《Journal of Central South University》 SCIE EI CAS 2008年第S1期351-356,共6页
Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheolo... Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheological properties.Then,the concept and the calculation procedure of the safety factor are established at different time.Making use of finite element software ANSYS,the most dangerous sliding surface of the slope can be obtained through the strength reduction technique.According to the dynamic safety factor based on rheological mechanism,a good forecasting could be presented to prevent and cure the landslide.The result shows that the couple analysis reveals the process of the slope failure with the time and the important influence on the long-term stability due to the rheological parameters. 展开更多
关键词 slope stability STRENGTH REDUCTION RHEOLOGICAL properties COUPLE analysis safety FACTOR
下载PDF
Distributed Fiber Optic Monitoring and Stability Analysis of a Model Slope under Surcharge Loading 被引量:23
20
作者 ZHU Hong-Hu SHI Bin +2 位作者 ZHANG Jie YAN Jun-Fan ZHANG Cheng-Cheng 《Journal of Mountain Science》 SCIE CSCD 2014年第4期979-989,共11页
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso... In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope. 展开更多
关键词 slope stability Geotechnical monitoring Fiber optic sensor Distributed strain sensing Brillouin optical time-domain analysis (BOTDA) Model test
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部