Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int...Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.展开更多
Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.T...Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights.展开更多
In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three...In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three simulations were conducted with a 25-km grid spacing for the period 1980–2014.The first simulation(WRF_ERA5)was driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5)dataset and served as the validation dataset.The original GCM dataset(MPI-ESM1-2-HR model)was used to drive the second simulation(WRF_GCM),while the third simulation(WRF_GCMbc)was driven by the bias-corrected GCM dataset.The bias-corrected GCM data has an ERA5-based mean and interannual variance and long-term trends derived from the ensemble mean of 18 CMIP6 models.Results demonstrate that the WRF_GCMbc significantly reduced the root-mean-square errors(RMSEs)of the climatological mean of downscaled variables,including temperature,precipitation,snow,wind,relative humidity,and planetary boundary layer height by 50%–90%compared to the WRF_GCM.Similarly,the RMSEs of interannual-tointerdecadal variances of downscaled variables were reduced by 30%–60%.Furthermore,the WRF_GCMbc better captured the annual cycle of the monsoon circulation and intraseasonal and day-to-day variabilities.The leading empirical orthogonal function(EOF)shows a monopole precipitation mode in the WRF_GCM.In contrast,the WRF_GCMbc successfully reproduced the observed tri-pole mode of summer precipitation over eastern China.This improvement could be attributed to a better-simulated location of the western North Pacific subtropical high in the WRF_GCMbc after GCM bias correction.展开更多
Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting f...Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting forecast data only at individual weather stations.In this study,a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model(ECMWF-IFS): 2-m temperature,2-m relative humidity,10-m wind speed,and 10-m wind direction,with a forecast lead time of 24 h to 240 h in North China.First,the forecast correction problem is transformed into an image-toimage translation problem in deep learning under the CU-net architecture,which is based on convolutional neural networks.Second,the ECMWF-IFS forecasts and ECMWF reanalysis data(ERA5) from 2005 to 2018 are used as training,validation,and testing datasets.The predictors and labels(ground truth) of the model are created using the ECMWF-IFS and ERA5,respectively.Finally,the correction performance of CU-net is compared with a conventional method,anomaly numerical correction with observations(ANO).Results show that forecasts from CU-net have lower root mean square error,bias,mean absolute error,and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h.CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics,whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity.For the correction of the 10-m wind direction forecast,which is often difficult to achieve,CU-net also improves the correction performance.展开更多
Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draf...Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.展开更多
In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the obser...In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon's track and intensity, although the results are not perfect.展开更多
Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications...Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.展开更多
An effective improvement on the empirical orthogonal function(EOF)–based bias correctionmethod for seasonal forecasts is proposed in this paper,by introducing a stepwise regression method into the process of EOF time...An effective improvement on the empirical orthogonal function(EOF)–based bias correctionmethod for seasonal forecasts is proposed in this paper,by introducing a stepwise regression method into the process of EOF time series correction.Using 30-year(1981–2010)hindcast results from IAP AGCM4.1(the latest version of this model),the improved method is validated for the prediction of summer(June–July–August)rainfall anomalies in Southeast China.The results in terms of the pattern correction coefficient(PCC)of rainfall anomalies shows that the 30-year-averaged prediction skill improves from 0.01 to 0.06 with the original correction method,and to 0.29 using the improved method.The applicability in real-time prediction is also investigated,using 2016 summer rainfall prediction as a test case.With a PCC of 0.59,the authors find that the new correction method significantly improves the prediction skill;the PCC using the direct prediction of the model is?0.04,and using the old bias correction method it is 0.37.展开更多
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee...Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.展开更多
This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The ...This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The results show considerable improvement in terms of the mean biases of rawinsonde observation-minus-background (OmB) residuals for observed water vapor, wind and temperature variables. The time series spectral analysis shows whitening of bias-corrected OmB residuals, and mean biases for rawinsonde observation-minus-analysis (OmA) are also improved. Some wind and temperature biases in the control experiment near the equatorial tropopause nearly vanish from the bias-corrected experiment. Despite the analysis improvement, the bias correction scheme has only a moderate impact on forecast skill. Significant interaction is also found among quality-control, satellite observation bias correction, and background bias correction, and the latter positively impacts satellite bias correction.展开更多
Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study wa...Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study was proposed and performed on raw products from two climate models,the First Institute Oceanography Earth System Model(FIOESM)and the National Centers for Environmental Prediction(NCEP)Climate Forecast System(CFS),to improve 60 days predictions for Arctic sea ice.Both models were initialized on July 1,August 1,and September 1 in 2018.A 60-day forecast was conducted as a part of the official sea ice service,especially for the ninth Chinese National Arctic Research Expedition(CHINARE)and the China Ocean Shipping(Group)Company(COSCO)Northeast Passage voyages during the summer of 2018.The results indicated that raw products from FIOESM underestimated sea ice concentration(SIC)overall,with a mean bias of SIC up to 30%.Bias correction resulted in a 27%improvement in the Root Mean Square Error(RMSE)of SIC and a 10%improvement in the Integrated Ice Edge Error(IIEE)of sea ice edge(SIE).For the CFS,the SIE overestimation in the marginal ice zone was the dominant features of raw products.Bias correction provided a 7%reduction in the RMSE of SIC and a 17%reduction in the IIEE of SIE.In terms of sea ice extent,FIOESM projected a reasonable minimum time and amount in mid-September;however,CFS failed to project both.Additional comparison with subseasonal to seasonal(S2S)models suggested that the bias correction methodology used in this study was more effective when predictions had larger biases.展开更多
To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radian...To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radiance data.The difference in the two schemes lies in the predictors use in air-mass bias correction.The predictors used in SCHEME 1 are all obtained from model first-guess,while those in SCHEME 2 are from model first-guess and radiance observations.The results from the two schemes show that after bias correction,the observation residual became smaller and closer to a Gaussian distribution.For both land and ocean data sets,the results obtained from SCHEME 1 are similar to those from SCHEME 2,which indicates that the predictors could be used in bias correction of ATOVS data.展开更多
Let two separate surveys collect related information on a single population U. Consider situation where we want to best combine data from the two surveys to yield a single set of estimates of a population quantity (po...Let two separate surveys collect related information on a single population U. Consider situation where we want to best combine data from the two surveys to yield a single set of estimates of a population quantity (population parameter) of interest. This Article presents a multiplicative bias reduction estimator for nonparametric regression to two sample problem in sample survey. The approach consists to apply a multiplicative bias correction to an estimator. The multiplicative bias correction method which was proposed, by Linton & Nielsen, 1994, assures a positive estimate and reduces the bias of the estimate with negligible increase in variance. Even as we apply this method to the two sample problem in sample survey, we found out through the study of it asymptotic properties that it was asymptotically unbiased, and statistically consistent. Furthermore an empirical study was carried out to compare the performance of the developed estimator with the existing ones.展开更多
Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferome...Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferometric infrared sounder(GIIRS)of FengYun-4 A(FY-4 A)observation and simulated brightness temperature based on background field,the brightness temperature bias correction of GIIRS channel is carried out based on random forest(RF)and extreme gradient boosting(XGBoost)machine learning.Based on the case data of Typhoon"Haishen",the correction effect of machine learning method is compared with Harris and Kelly’s"off-line"method,and the importance of different predictors to the bias correction is further discussed.The experimental results show that the systematic bias is effectively corrected,and the following conclusions are obtained:the correction effect is improved by adding geographic information(longitude and latitude)into the predictors;under the given combination of predictors,the correction effect of XGBoost is the best,followed by random forest,and finally offline method,but the three methods can correct the bias effectively;compared with long wave data of FY-4 A/GIIRS,machine learning may be more feasible for medium wave data bias correction.展开更多
Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissio...Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissions scenarios.This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical(1980−2005)temperature simulations over East Asia.Future(2006−49)temperature trends under the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method.Results show the following:(1)The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions,especially in the Tibetan Plateau region.(2)All bias correction methods can significantly reduce the simulation biases.The quantile mapping method outperforms other bias correction methods in all RCMs,with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8%(HadGEM3-RA),63.2%(MM5),51.3%(RegCM),80.7%(YSU-RCM)and 62.0%(WRF).(3)The Bayesian model averaging(BMA)method outperforms the simple multi-model averaging(SMA)method in narrowing the uncertainty of bias-corrected results.For the spatial correlation coefficient,the improvement rate of the BMA method ranges from 2%to 31%over the 10 subregions,when compared with individual RCMs.(4)For temperature projections,the warming is significant,ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario.(5)The quantile mapping method reduces the uncertainty over all subregions by between 66%and 94%.展开更多
Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and dis...Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.展开更多
Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional...Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.展开更多
Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study com...Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study compares and evaluates two kinds of precipitation datasets,the reanalysis product downscaled by the Weather Research and Forecasting(WRF)output,and the satellite product,the Tropical Rainfall Measuring Mission(TRMM)Multisatellite Precipitation Analysis(TMPA)product,as well as their bias-corrected datasets in the Middle Qilian Mountain in Northwest China.Results show that the WRF output with finer resolution perfonns well in both estimating precipitation and hydrological simulation,while the TMPA product is unreliable in high mountainous areas.Moreover,bias-corrected WRF output also performs better than bias-corrected TMPA product.Combined with the previous studies,atmospheric reanalysis datasets are more suitable than the satellite products in high mountainous areas.Climate is more important than altitude for the\falseAlarms'events of the TRMM product.Designed to focus on the tropical areas,the TMPA product mistakes certain meteorological situations for precipitation in subhumid and semiarid areas,thus causing significant"falseAlarms"events and leading to significant overestimations and unreliable performance.Simple linear bias correction method,only removing systematical errors,can significantly improves the accuracy of both the WRF output and the TMPA product in arid high mountainous areas with data scarcity.Evaluated by hydrological simulations,the bias-corrected WRF output is more reliable than the gauge dataset.Thus,data merging of the WRF output and gauge observations would provide more reliable precipitation estimations in arid high mountainous areas.展开更多
In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function...In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.展开更多
为了提升便携式近红外仪器中单一水果模型应用的广泛性,创新性的将不同仪器间模型传递的思想应用在不同种类水果间可溶性固形物(soluble solid content,SSC)的模型传递。基于苹果、梨、桃三种水果在SSC含量范围、果型大小以及果皮厚度...为了提升便携式近红外仪器中单一水果模型应用的广泛性,创新性的将不同仪器间模型传递的思想应用在不同种类水果间可溶性固形物(soluble solid content,SSC)的模型传递。基于苹果、梨、桃三种水果在SSC含量范围、果型大小以及果皮厚度等的相近物理化学特性,提出利用简单的斜率/截距(Slope/Bias)算法对苹果SSC的偏最小二乘(partial least square,PLS)模型进行传递,仅用少量的梨和桃样品即可将苹果SSC模型应用于其SSC值的预测,更快捷方便且节约成本。对于梨样品,用35个标准样品,预测集均方根误差(root mean square error of prediction,RMSEP)值由直接预测的1.009°Brix降为0.565°Brix;对于桃样品,用40个标准样品,RMSEP由直接预测的1.726°Brix降为0.677°Brix。为了验证该模型传递方法的可行性,通过斜率/截距算法,采用梨和桃模型对其他两种水果的SSC进行预测,其中利用建立的梨SSC模型,经斜率/截距算法模型传递后,对于苹果样品,用30个标准样品,RMSEP值达到0.597°Brix,对于桃样品,用40个标准样品,RMSEP值达到0.689°Brix;利用建立的桃SSC模型,经斜率/截距算法模型传递后,对于苹果样品,用35个标准样品,RMSEP值达到0.654°Brix,对于梨样品,用30个标准样品,RMSEP值达到0.439°Brix。研究结果表明:斜率/截距(Slope/Bias)方法可用于苹果、梨、桃等相近种类水果间的模型传递,为近红外光谱仪在相似种类物质间的预测提供了新思路。展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)+1 种基金CAAI-MindSpore Academic Fund Research Projects(CAAIXSJLJJ2023MindSpore11)the program of China Scholarships Council(No.CXXM2101180001)。
文摘Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP214)the National Natural Science Foundation of China(Grant Nos.62071279 and 42206029)the National Key R&D Program of China(Grant No.2020YFA0608804)。
文摘Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights.
基金supported jointly by the National Natural Science Foundation of China (Grant No.42075170)the National Key Research and Development Program of China (2022YFF0802503)+2 种基金the Jiangsu Collaborative Innovation Center for Climate Changea Chinese University Direct Grant(Grant No. 4053331)supported by the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulator Facility”(EarthLab)
文摘In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three simulations were conducted with a 25-km grid spacing for the period 1980–2014.The first simulation(WRF_ERA5)was driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5)dataset and served as the validation dataset.The original GCM dataset(MPI-ESM1-2-HR model)was used to drive the second simulation(WRF_GCM),while the third simulation(WRF_GCMbc)was driven by the bias-corrected GCM dataset.The bias-corrected GCM data has an ERA5-based mean and interannual variance and long-term trends derived from the ensemble mean of 18 CMIP6 models.Results demonstrate that the WRF_GCMbc significantly reduced the root-mean-square errors(RMSEs)of the climatological mean of downscaled variables,including temperature,precipitation,snow,wind,relative humidity,and planetary boundary layer height by 50%–90%compared to the WRF_GCM.Similarly,the RMSEs of interannual-tointerdecadal variances of downscaled variables were reduced by 30%–60%.Furthermore,the WRF_GCMbc better captured the annual cycle of the monsoon circulation and intraseasonal and day-to-day variabilities.The leading empirical orthogonal function(EOF)shows a monopole precipitation mode in the WRF_GCM.In contrast,the WRF_GCMbc successfully reproduced the observed tri-pole mode of summer precipitation over eastern China.This improvement could be attributed to a better-simulated location of the western North Pacific subtropical high in the WRF_GCMbc after GCM bias correction.
基金supported in part by the National Key R&D Program of China (Grant No.2018YFF0300102)the National Natural Science Foundation of China (Grant Nos.41875049 and 41575050)the Beijing Natural Science Foundation (Grant No.8212025)。
文摘Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting forecast data only at individual weather stations.In this study,a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model(ECMWF-IFS): 2-m temperature,2-m relative humidity,10-m wind speed,and 10-m wind direction,with a forecast lead time of 24 h to 240 h in North China.First,the forecast correction problem is transformed into an image-toimage translation problem in deep learning under the CU-net architecture,which is based on convolutional neural networks.Second,the ECMWF-IFS forecasts and ECMWF reanalysis data(ERA5) from 2005 to 2018 are used as training,validation,and testing datasets.The predictors and labels(ground truth) of the model are created using the ECMWF-IFS and ERA5,respectively.Finally,the correction performance of CU-net is compared with a conventional method,anomaly numerical correction with observations(ANO).Results show that forecasts from CU-net have lower root mean square error,bias,mean absolute error,and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h.CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics,whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity.For the correction of the 10-m wind direction forecast,which is often difficult to achieve,CU-net also improves the correction performance.
基金supported by the project of Shandong Provincial National Science Foundation for Distinguished Young Scholars(Grant No.JQ201113)SDUST's National Science Foundation for Distinguished Young Scholars(Grant No.2010KYJQ102)
文摘Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos KZCX2-YW-202 and KZCX2-YW-Q03-3)the Chinese Special Scientific Research Project for Public Interest (Grant No GYHY200906004)
文摘In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon's track and intensity, although the results are not perfect.
基金supported by International Partnership Pro-ject of the CAS (CXTD-Z2005-2)the One Hundred Talents program of CSA, and the U.S. National Science Foundation OPP grants 0230083, 0612334, and 0632160
文摘Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.
基金jointly supported by the National Key Research and Development Program of China [grant number2016YFC0402702]the Key Project of the Meteorological Public Welfare Research Program [grant number GYHY201406021]the National Natural Science Foundation of China [grant numbers 41575095 and 41661144032]
文摘An effective improvement on the empirical orthogonal function(EOF)–based bias correctionmethod for seasonal forecasts is proposed in this paper,by introducing a stepwise regression method into the process of EOF time series correction.Using 30-year(1981–2010)hindcast results from IAP AGCM4.1(the latest version of this model),the improved method is validated for the prediction of summer(June–July–August)rainfall anomalies in Southeast China.The results in terms of the pattern correction coefficient(PCC)of rainfall anomalies shows that the 30-year-averaged prediction skill improves from 0.01 to 0.06 with the original correction method,and to 0.29 using the improved method.The applicability in real-time prediction is also investigated,using 2016 summer rainfall prediction as a test case.With a PCC of 0.59,the authors find that the new correction method significantly improves the prediction skill;the PCC using the direct prediction of the model is?0.04,and using the old bias correction method it is 0.37.
基金The National Key Research and Development Program of China under contract No.2018YFC1406206the National Natural Science Foundation of China under contract No.41876014.
文摘Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.
文摘This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The results show considerable improvement in terms of the mean biases of rawinsonde observation-minus-background (OmB) residuals for observed water vapor, wind and temperature variables. The time series spectral analysis shows whitening of bias-corrected OmB residuals, and mean biases for rawinsonde observation-minus-analysis (OmA) are also improved. Some wind and temperature biases in the control experiment near the equatorial tropopause nearly vanish from the bias-corrected experiment. Despite the analysis improvement, the bias correction scheme has only a moderate impact on forecast skill. Significant interaction is also found among quality-control, satellite observation bias correction, and background bias correction, and the latter positively impacts satellite bias correction.
基金The National Key Research and Development Program of China under contract No.2018YFC1407206the National Natural Science Foundation of China under contract Nos 41821004 and U1606405the Basic Scientific Fund for National Public Research Institute of China(Shu Xingbei Young Talent Program)under contract No.2019S06.
文摘Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study was proposed and performed on raw products from two climate models,the First Institute Oceanography Earth System Model(FIOESM)and the National Centers for Environmental Prediction(NCEP)Climate Forecast System(CFS),to improve 60 days predictions for Arctic sea ice.Both models were initialized on July 1,August 1,and September 1 in 2018.A 60-day forecast was conducted as a part of the official sea ice service,especially for the ninth Chinese National Arctic Research Expedition(CHINARE)and the China Ocean Shipping(Group)Company(COSCO)Northeast Passage voyages during the summer of 2018.The results indicated that raw products from FIOESM underestimated sea ice concentration(SIC)overall,with a mean bias of SIC up to 30%.Bias correction resulted in a 27%improvement in the Root Mean Square Error(RMSE)of SIC and a 10%improvement in the Integrated Ice Edge Error(IIEE)of sea ice edge(SIE).For the CFS,the SIE overestimation in the marginal ice zone was the dominant features of raw products.Bias correction provided a 7%reduction in the RMSE of SIC and a 17%reduction in the IIEE of SIE.In terms of sea ice extent,FIOESM projected a reasonable minimum time and amount in mid-September;however,CFS failed to project both.Additional comparison with subseasonal to seasonal(S2S)models suggested that the bias correction methodology used in this study was more effective when predictions had larger biases.
基金National Natural Science Foundation of China (40875021, 40930951)Knowledge Innovation Program of Chinese Academy of Sciences ( KZCX2-YW-Q03-3)
文摘To better assimilate Advanced TIROS Operational Vertical Sounder(ATOVS) radiance data and provide more accurate initial fields for a numerical model,two bias correction schemes are employed to correct the ATOVS radiance data.The difference in the two schemes lies in the predictors use in air-mass bias correction.The predictors used in SCHEME 1 are all obtained from model first-guess,while those in SCHEME 2 are from model first-guess and radiance observations.The results from the two schemes show that after bias correction,the observation residual became smaller and closer to a Gaussian distribution.For both land and ocean data sets,the results obtained from SCHEME 1 are similar to those from SCHEME 2,which indicates that the predictors could be used in bias correction of ATOVS data.
文摘Let two separate surveys collect related information on a single population U. Consider situation where we want to best combine data from the two surveys to yield a single set of estimates of a population quantity (population parameter) of interest. This Article presents a multiplicative bias reduction estimator for nonparametric regression to two sample problem in sample survey. The approach consists to apply a multiplicative bias correction to an estimator. The multiplicative bias correction method which was proposed, by Linton & Nielsen, 1994, assures a positive estimate and reduces the bias of the estimate with negligible increase in variance. Even as we apply this method to the two sample problem in sample survey, we found out through the study of it asymptotic properties that it was asymptotically unbiased, and statistically consistent. Furthermore an empirical study was carried out to compare the performance of the developed estimator with the existing ones.
基金Supported by the National Natural Science Foundation of China(41805080)Special Project for Innovation and Development of Anhui Meteorological Bureau(CXB202101)Central Asian Fund for Atmospheric Science Research(CAAS202003)。
文摘Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferometric infrared sounder(GIIRS)of FengYun-4 A(FY-4 A)observation and simulated brightness temperature based on background field,the brightness temperature bias correction of GIIRS channel is carried out based on random forest(RF)and extreme gradient boosting(XGBoost)machine learning.Based on the case data of Typhoon"Haishen",the correction effect of machine learning method is compared with Harris and Kelly’s"off-line"method,and the importance of different predictors to the bias correction is further discussed.The experimental results show that the systematic bias is effectively corrected,and the following conclusions are obtained:the correction effect is improved by adding geographic information(longitude and latitude)into the predictors;under the given combination of predictors,the correction effect of XGBoost is the best,followed by random forest,and finally offline method,but the three methods can correct the bias effectively;compared with long wave data of FY-4 A/GIIRS,machine learning may be more feasible for medium wave data bias correction.
文摘Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissions scenarios.This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical(1980−2005)temperature simulations over East Asia.Future(2006−49)temperature trends under the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method.Results show the following:(1)The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions,especially in the Tibetan Plateau region.(2)All bias correction methods can significantly reduce the simulation biases.The quantile mapping method outperforms other bias correction methods in all RCMs,with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8%(HadGEM3-RA),63.2%(MM5),51.3%(RegCM),80.7%(YSU-RCM)and 62.0%(WRF).(3)The Bayesian model averaging(BMA)method outperforms the simple multi-model averaging(SMA)method in narrowing the uncertainty of bias-corrected results.For the spatial correlation coefficient,the improvement rate of the BMA method ranges from 2%to 31%over the 10 subregions,when compared with individual RCMs.(4)For temperature projections,the warming is significant,ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario.(5)The quantile mapping method reduces the uncertainty over all subregions by between 66%and 94%.
基金Program of Key Laboratory of Meteorological Disaster(KLME202209)National Key R&D Program of China(2017YFC1502102)。
文摘Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05040301)the National Basic Research Program of China (Grant No. 2010CB951804)the National Natural Science Foundation of China (Grant No. 41101045)
文摘Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.
基金Under the auspices of National Natural Science Foundation of China(No.42030501,41877148,41501016,41530752)Scherer Endowment Fund of Department of Geography,Western Michigan University and the Fundamental Research Funds for the Central Universities(No.lzujbky-2019-98)。
文摘Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study compares and evaluates two kinds of precipitation datasets,the reanalysis product downscaled by the Weather Research and Forecasting(WRF)output,and the satellite product,the Tropical Rainfall Measuring Mission(TRMM)Multisatellite Precipitation Analysis(TMPA)product,as well as their bias-corrected datasets in the Middle Qilian Mountain in Northwest China.Results show that the WRF output with finer resolution perfonns well in both estimating precipitation and hydrological simulation,while the TMPA product is unreliable in high mountainous areas.Moreover,bias-corrected WRF output also performs better than bias-corrected TMPA product.Combined with the previous studies,atmospheric reanalysis datasets are more suitable than the satellite products in high mountainous areas.Climate is more important than altitude for the\falseAlarms'events of the TRMM product.Designed to focus on the tropical areas,the TMPA product mistakes certain meteorological situations for precipitation in subhumid and semiarid areas,thus causing significant"falseAlarms"events and leading to significant overestimations and unreliable performance.Simple linear bias correction method,only removing systematical errors,can significantly improves the accuracy of both the WRF output and the TMPA product in arid high mountainous areas with data scarcity.Evaluated by hydrological simulations,the bias-corrected WRF output is more reliable than the gauge dataset.Thus,data merging of the WRF output and gauge observations would provide more reliable precipitation estimations in arid high mountainous areas.
文摘In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function.
文摘为了提升便携式近红外仪器中单一水果模型应用的广泛性,创新性的将不同仪器间模型传递的思想应用在不同种类水果间可溶性固形物(soluble solid content,SSC)的模型传递。基于苹果、梨、桃三种水果在SSC含量范围、果型大小以及果皮厚度等的相近物理化学特性,提出利用简单的斜率/截距(Slope/Bias)算法对苹果SSC的偏最小二乘(partial least square,PLS)模型进行传递,仅用少量的梨和桃样品即可将苹果SSC模型应用于其SSC值的预测,更快捷方便且节约成本。对于梨样品,用35个标准样品,预测集均方根误差(root mean square error of prediction,RMSEP)值由直接预测的1.009°Brix降为0.565°Brix;对于桃样品,用40个标准样品,RMSEP由直接预测的1.726°Brix降为0.677°Brix。为了验证该模型传递方法的可行性,通过斜率/截距算法,采用梨和桃模型对其他两种水果的SSC进行预测,其中利用建立的梨SSC模型,经斜率/截距算法模型传递后,对于苹果样品,用30个标准样品,RMSEP值达到0.597°Brix,对于桃样品,用40个标准样品,RMSEP值达到0.689°Brix;利用建立的桃SSC模型,经斜率/截距算法模型传递后,对于苹果样品,用35个标准样品,RMSEP值达到0.654°Brix,对于梨样品,用30个标准样品,RMSEP值达到0.439°Brix。研究结果表明:斜率/截距(Slope/Bias)方法可用于苹果、梨、桃等相近种类水果间的模型传递,为近红外光谱仪在相似种类物质间的预测提供了新思路。