期刊文献+
共找到1,651篇文章
< 1 2 83 >
每页显示 20 50 100
Evolution model and failure mechanisms of rainfall-induced cracked red clay slopes:insights from Xinshao County,China
1
作者 JIAO Weizhi ZHANG Ming +4 位作者 LI Peng XIE Junjin PANG Haisong LIU Fuxing YANG Long 《Journal of Mountain Science》 SCIE CSCD 2024年第3期867-881,共15页
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro... Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings. 展开更多
关键词 Red clay slopes Cracks Preferential flow Failure mechanism
下载PDF
Stability of bedded rock slopes subjected to hydro-fluctuation and associated strength deterioration
2
作者 Bin Xu Xinrong Liu +2 位作者 Yue Liang Xiaohan Zhou Zuliang Zhong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3233-3257,共25页
Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.... Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT. 展开更多
关键词 Bedded rock slopes Hydro-fluctuation belt Shaking table test UDEC simulation Dynamic response mechanism
下载PDF
Stability analysis of intermittently jointed rock slopes based on the stepped failure mode
3
作者 LI Dejian FU Junwen +4 位作者 LI Hekai CHENG Xiao ZHAO Lianheng ZHANG Yingbin PENG Xinyan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1019-1035,共17页
In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermitt... In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermittently bedding jointed rock slopes,the correlation and difference in strength parameters between joints and rock bridges,along with the various failure modes and intermittency of rock bridges,contribute to the complexity of stepped failure modes and the unpredictability of failure regions.Based on the upper-bound limit analysis method and multi-sliders step-path failure mode,considering the shear and tensile failure of rock bridges and the weakened relationship between the strength parameters of rock bridges and jointed surfaces,by introducing the modified M-C failure criterion and the formula for calculating the energy consumption of tensile failure of rock bridges,two failure mechanisms are constructed to obtain the safety factor(F_(s))of intermittently jointed rock slopes.The sequential quadratic programming method is used to obtain the optimal upper-bound solution for F_(s).The influence of multiple key parameters(slope height H,horizontal distance L,Slope angleβ,shear strength parameters of the rock bridgeφr and cr,Dimensionless parameter u,weakening coefficients of the internal friction angle and cohesion between the rock bridges and joint surfaces Kφand Kc)on the stability analysis of intermittently jointed rock slopes under the shear failure mode of rock bridges as well as under the tensile failure mode is also explored.The reliability of the failure mechanisms is verified by comparative analysis with theoretical results,numerical results,and landslide cases,and the variation rules of F_(s)with each key parameter are obtained.The results show that F_(s) varies linearly withφr and cr of the rock bridge and with K_(φ)and K_(c),whereas F_(s)changes nonlinearly with H and L.In particular,with the increase in Kφand Kc,Fs increases by approximately 52.78%and 171.02%on average,respectively.For rock bridge tensile failure,F_(s) shows a nonlinearly positive correlation withφr,cr,Kφand Kc.In particular,with the increase in Kφand Kc,Fs increases by approximately 13%and 61.69%on average,respectively.Fs decreases rapidly with increasing slope gradientβand decreasing dimensionless parameterμ.When Kφand Kc are both less than 1.0,the stepped sliding surface occurs more easily than the plane failure surface,especially in the case of tensile failure of the rock bridge.In addition,rock slopes with higher strength parameters,taller heights,and greater weakening coefficients are prone to rock bridge tension failure with lower Fs,and more attention should be given to the occurrence of such accidents in actual engineering. 展开更多
关键词 Jointed rock slopes Stepped sliding failure Weakening characteristics Modified M‒C failure criterion
下载PDF
Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
4
作者 Dian Xiao Xiaoyan Zhao +3 位作者 Corrado Fidelibus Roberto Tomás Qiu Lu Hongwei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2503-2515,共13页
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha... A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. 展开更多
关键词 Sunny-shady slope Freeze and thaw Pore structure Tight rocks Talus slope Cold regions
下载PDF
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
5
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope Slope stability analysis Rainfall effect Strength reduction
下载PDF
Hybrid response surface method for system reliability analysis of pilereinforced slopes
6
作者 Xiangrui Duan Jie Zhang +2 位作者 Leilei Liu Jinzheng Hu Yadong Xue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3395-3406,共12页
To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile... To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles. 展开更多
关键词 SLOPE PILES System reliability Support vector machine Ordinary kriging
下载PDF
Bio-cementation for tidal erosion resistance improvement of foreshore slopes based on microbially induced magnesium and calcium precipitation
7
作者 Xiaohao Sun Junjie Wang +3 位作者 Hengxing Wang Linchang Miao Ziming Cao Linyu Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1696-1708,共13页
In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique ... In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering. 展开更多
关键词 Bio-cementation Erosion resistance Foreshore slope stabilization Magnesium ions Calcium ions
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
8
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 Kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
Seismic stability of expansive soil slopes reinforced by anchor cables using a modified horizontal slice method
9
作者 Wang Long Chen Guoxing +3 位作者 Hu Wei Zhou Enquan Feng Jianxue Huang Anping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期377-387,共11页
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak... Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa. 展开更多
关键词 limit analysis expansive soil slope matric suction anchor cable pseudo-dynamic analysis
下载PDF
Three-dimensional stability calculation method for high and large composite slopes formed by mining stope and inner dump in adjacent open pits
10
作者 Zuchao Liang Dong Wang +4 位作者 Guanghe Li Guangyu Sun Mingyu Yu Dong Xia Chunjian Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期507-520,共14页
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi... The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis. 展开更多
关键词 Composite slope Destabilization mechanism 3D mechanical effect Three-dimensional stability Coordinated development distance
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
11
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Short-term displacement prediction for newly established monitoring slopes based on transfer learning
12
作者 Yuan Tian Yang-landuo Deng +3 位作者 Ming-zhi Zhang Xiao Pang Rui-ping Ma Jian-xue Zhang 《China Geology》 CAS CSCD 2024年第2期351-364,共14页
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher... This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes. 展开更多
关键词 LANDSLIDE Slope displacement prediction Transfer learning Integrated dataset Transformer Pre-trained model Universal Landslide Monitoring Program(ULMP) Geological hazards survey engineering
下载PDF
Design and Construction of Automatic Monitoring System for Open-pit Coal Mine Slopes
13
作者 Yu LUO 《Asian Agricultural Research》 2024年第6期19-21,24,共4页
[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the co... [Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects. 展开更多
关键词 SLOPE MONITORING Automatic MONITORING technology Global NAVIGATION Satellite SYSTEM (GNSS) MONITORING SYSTEM Early WARNING
下载PDF
Forest succession trajectories after fi res in valleys and on slopes in the Greater Khingan Mountains,China 被引量:2
14
作者 Chao Zhong Meng Guo +4 位作者 Fenfen Zhou Jianuo Li Fangbing Yu Futao Guo Wenshan Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期623-640,共18页
Accurate assessment of postfire vegetation recovery is important for forest management and the conservation of species diversity.Topography is an important factor aff ecting vegetation recovery but whether species com... Accurate assessment of postfire vegetation recovery is important for forest management and the conservation of species diversity.Topography is an important factor aff ecting vegetation recovery but whether species composition varies with diff erent recovery stages and between valleys and slopes is unclear.Using fi eld data and a space-for-time substitution method,we quantifi ed species richness and diversity to obtain the successional trajectories of valleys and slopes.We surveyed the species of 10 burned areas from 1986 to 2010 in the Greater Khingan Mountains in northeastern China,and found that with increasing postfi re recovery time,species richness in both valleys and slopes gradually decreased.However,species richness in valleys was relatively higher.Shrubs recovered rapidly in the valleys,and species diversity maximized approximately 11 years after fi re.However,it maximized 17–18 years after fi re on the slopes.Numerous shade-tolerant species were present in the valleys 11 years after fi re but not until after 18 years on slopes.Larch appeared earlier than 11 years after fi re and its recovery was slow in the valleys but appeared quickly on slopes and established dominance early.Our study provides some new insights into vegetation succession after fi re at local scales.After fi re,the vegetation recovery processes diff er with topography and it aff ects the initial rate of recovery and species composition at diff erent successional stages. 展开更多
关键词 Vegetation recovery Valleys and slopes Space-for-time substitution Species richness/diversity/composition Greater Khingan Mountains
下载PDF
Smart and fast reinforcement design for anti-dip bedding rock slopes 被引量:1
15
作者 Yun Zheng Congxin Chen +2 位作者 Fei Meng Xiaodong Fu Wei Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2943-2953,共11页
Rock slopes are usually reinforced by a number of rock bolts due to the high efficiency and low price.However,where should the rock bolts be installed is still a troublesome issue.For anti-dip bedding rock slopes(ABRS... Rock slopes are usually reinforced by a number of rock bolts due to the high efficiency and low price.However,where should the rock bolts be installed is still a troublesome issue.For anti-dip bedding rock slopes(ABRSs),the installation position of rock bolts is a controlling factor that determines the reinforcement effect.In this work,a theoretical method is firstly proposed for assessing the stability of ABRSs reinforced by rock bolts using a limit equilibrium model.A comparison of theoretical calculations and numerical results was conducted to test the correctness of the theoretical method.Based on the stability assessment of ABRSs,we introduce adaptive moment estimation method(Adam)to optimize the installation location of rock bolts.Using Adam optimizer,the optimal layout of rock bolts with the maximum factor of safety can be determined,and the factor of safety of the slope increases by about 25%using the same amount of rock bolts but with different installation locations.The proposed method enables the fast stability analysis and supporting design for reinforced ABRSs,which paves the way to smart supporting design of slopes. 展开更多
关键词 Rock slopes Toppling failure Rock bolts Stability assessment Smart analysis
下载PDF
Evaluation of toppling rock slopes using a composite cloud model with DEMATEL–CRITIC method 被引量:3
16
作者 Huan-ling Wang Xu-fei Zhao +3 位作者 Hong-jie Chen Kui Yi Wei-chau Xie Wei-ya Xu 《Water Science and Engineering》 EI CAS CSCD 2023年第3期280-288,共9页
Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights ... Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights of the decision-making trial and evaluation laboratory (DEMATEL) and criteria importance through intercriteria correlation (CRITIC) methods. A safety evaluation system was developed according to in situ monitoring data. The backward cloud generator was used to calculate the numerical characteristics of a cloud model of quantitative indices, and different virtual clouds were used to synthesize some clouds into a generalized one. The synthesized numerical characteristics were calculated to comprehensively evaluate the safety of toppling rock slopes. A case study of a toppling rock slope near the Huangdeng Hydropower Station in China was conducted using monitoring data collected since operation of the hydropower project began. The results indicated that the toppling rock slope was moderately safe with a low safety margin. The composite cloud model considers the fuzziness and randomness of safety evaluation and enables interchange between qualitative and quantitative knowledge. This study provides a new theoretical method for evaluating the safety of toppling rock slopes. It can aid in the predication, control, and even prevention of disasters. 展开更多
关键词 Toppling rock slope Safety evaluation Composite cloud model DEMATEL CRITIC Huangdeng Hydropower Project
下载PDF
Experimental study on instability mechanism and critical intensity of rainfall of high-steep rock slopes under unsaturated conditions 被引量:3
17
作者 Xiaoshuang Li Qihang Li +4 位作者 Yunmin Wang Wei Liu Di Hou Wenbo Zheng Xiong Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1243-1260,共18页
Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and ... Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and intensity of precipitation.A large-scale model experiment was conducted on a self-designed physical simulation experiment platform to investigate the failure and instability of high-steep rock slopes under unsaturated conditions.The real-time reproduction of the progressive failure process in high-steep rock slopes enabled the determination of the critical rainfall intensity and revealed the mechanism underlying slope instability.Experiment results indicated that rainfall may be the primary factor contributing to rock mass instability,while continuous pillar mining exacerbates the extent of rock mass failure.The critical failure stage of high-steep rock slopes occurs at a rainfall intensity of 40 mm/h,whereas a rainfall exceeding 50 mm can induce critical instability and precipitation reaching up to 60 mm will result in slope failure.The improved region growing segmentation method(IRGSM)was subsequently employed for image recognition of rock mass deformation in underground mines.Herein an error comparison with the simple linear iterative cluster(SLIC)superpixel method and the original region growing segmentation method(ORGSM)showed that the average identification error in the X and Y directions by the method was reduced significantly(1.82%and 1.80%in IRGSM;4.70%and 6.26%in SLIC;9.45%and 12.40%in ORGSM).Ultimately,the relationship between rainfall intensity and failure probability was analyzed using the Monte Carlo method.Moreover,the stability assessment criteria of rock slope under unsaturated condition were quantitatively and accurately evaluated. 展开更多
关键词 Open-pit to underground mining Rock slope Rainfall infiltration Excavation unloading Similar physical model Image recognition
下载PDF
Dynamic damage evolution of bank slopes with serrated structural planes considering the deteriorated rock mass and frequent reservoirinduced earthquakes 被引量:1
18
作者 Xinrong Liu Yan Wang +3 位作者 Bin Xu Xiaohan Zhou Xueyan Guo Luli Miao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1131-1145,共15页
To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under ... To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing. 展开更多
关键词 Rock bedded slope Serrated structural planes Reservoir-induced earthquakes Hydro-fluctuation belt Damage evolution
下载PDF
Theoretical study on stability evolution of soft and hard interbedded bedding reservoir slopes 被引量:1
19
作者 WU Qiong ZHANG Bo +3 位作者 TANG Hui-ming WANG di LIU Zhi-qi LIN Zhi-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2744-2755,共12页
Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock... Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock slopes that have a single failure plane.However,this method cannot accurately estimate the stability of soft and hard interbedded bedding reservoir slopes because the strength parameters of a soft and hard interbedded rock mass vary spatially along the bedding plane and deteriorate with time due to periodic fluctuations of reservoir level.A modified LEM is proposed to evaluate the stability evolution of soft and hard interbedded bedding reservoir slopes considering the spatial variation and temporal deterioration of shear strength parameters of rock masses and bedding planes.In the modified LEM,the S-curve model is used to define the spatial variation of shear strength parameters,and general deterioration equations of shear strength parameters with the increasing number of wettingdrying cycles(WDC)are proposed to describe the temporal deterioration.Also,this method is applied to evaluate the stability evolution of a soft and hard interbedded bedding reservoir slope,located at the Three Gorges Reservoir.The results show that neglecting the spatial variation and temporal deterioration of shear strength parameters may overestimate slope stability.Finally,the modified LEM provides useful guidance to reasonably evaluate the long-term stability of soft and hard interbedded bedding reservoir slopes in reservoir area. 展开更多
关键词 Soft and hard interbedded rock slope Limit equilibrium method Spatial variation Wetting and drying cycles Plane failure Stability evolution
下载PDF
Influence of surface roughness on the development of moss-dominated biocrusts on mountainous rock-cut slopes in West Sichuan, China
20
作者 ZHAO Xin-yue ZHAO Mao-qiang +3 位作者 WANG Pan-pan DAI Yu-quan PU Wan-qiu HUANG Cheng-min 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2181-2196,共16页
Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes... Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose. 展开更多
关键词 Biocrusts MOSS Natural restoration Repose angle Rock slope ROUGHNESS
下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部