The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongch...The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.展开更多
This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfaces of alpine environments.They are an empirical method based on the linear relationship between net radi...This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfaces of alpine environments.They are an empirical method based on the linear relationship between net radiation and global solar radiation and a flux-by-flux method involving the estimation of all the individual components of radiation budget independently.The results show that the empirical method is capable of predicting hourly net radiation on sloping sur- faces to within about±53 W m^(-2) under all sky conditions.During clear sky conditions,it could predict net radiation on slopes to within±58 W m^(-2) or 16% of the measured values.The flux-by-flux method,although it did not perform as well as the empirical method,performed adequately and could give estimates of net radiation on slopes with root mean square error of less than 74 W m^(-2)(20%)and a mean bias error of 27 W m^(-2)(7%).展开更多
A joint probability density function (PDF) for surface slopes in two arbitrary directions is derived on the basis of Longuet Higgins's linear model for three-dimensionol (3-D) random wave field. and the correlatio...A joint probability density function (PDF) for surface slopes in two arbitrary directions is derived on the basis of Longuet Higgins's linear model for three-dimensionol (3-D) random wave field. and the correlation moments of surface slopes. as parameters in the PDF, are expressed in terms of directional spectrum of ocean waves. So long as the directional spectrum model is given, these parameters are determined. Since the directional spectrum models proposed so far are mostly parameterized by the wind speed and fetch, this allows for substituting these parameters with thc wind speed and fetch. As an example, the wind speed and fetch are taken to be 14 m ' s and 200 km, and the Hasselmann and Donclan directional spectra are, respectively, use to compute these parameters. Some novel results a reobtained. One of the increasing interesting results is that the variances of surface slope in downwind and cross-wind directions determined by the Donclan directional spectra are close to those measured by Cox and Munk (1954). Some discussions are made on these results.展开更多
The formation of the identical slope surface and the method of construction are discussed. On the basement of building the parameter equation of variable-radius circle family envelope, the frequently used parameter eq...The formation of the identical slope surface and the method of construction are discussed. On the basement of building the parameter equation of variable-radius circle family envelope, the frequently used parameter equation of the identical slope surface of the top of taper moving along column helix, horizental arc and line is built. The equation can be used to construct the identical slope surface’s contours, gradient lines and three dimensional figures correctly.展开更多
The principle of ocean wave spectrometers was first presented several decades ago to detect the directional wave spectrum with real-aperture radar(Jackson,1981). To invert wave spectra using an ocean wave spectrometer...The principle of ocean wave spectrometers was first presented several decades ago to detect the directional wave spectrum with real-aperture radar(Jackson,1981). To invert wave spectra using an ocean wave spectrometer,for simplicity,the hydrodynamic forcing and wave-wave interaction effect are neglected and a Gaussian slope probability density function(pdf) is used to calculate the normalized backscattering cross-section( σ 0) of the ocean surface. However,the real sea surface is non-Gaussian. It is not known whether the non-Gaussian property of the sea surface will affect the performance of the inversion of the wave spectrum if following existing inversion steps and methods. In this paper,the pdf of the sea surface slope is expressed as a Gram-Charlier fourth-order expansion,which is quasi-Gaussian. The modulation transfer function(MTF) is derived for a non-Gaussian slope pdf. The effects of non-Gaussian properties of the sea surface slope on the inversion process and result are then studied in a simulation of the SWIM(Surface Waves Investigation and Monitoring) instrument configuration to be used on the CFOSAT(China-France Oceanography Satellite) mission. The simulation results show that the mean trend of σ 0 depends on the sea slope pdf,and the peakedness and skewness coefficients of the slope pdf affect the shape of the mean trend of σ 0 versus incidence and azimuth; owing to high resolution of σ 0 in the range direction,MTF obtained using the mean trend of σ 0 is almost as accurate as that set in the direct simulation; in the inversion,if ignoring the non-Gaussian assumption,the inversion performances for the wave spectrum decrease,as seen for an increase in the energy error of the inverted wave slope spectrum. However,the peak wavelength and wave direction are the same for inversions that consider and ignore the non-Gaussian property.展开更多
In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformari...In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformarion and damage of bedding sliding with depth-thickness ratios of 200:1,150:1,120:1,100:1 and 50:1 by adopting numerical simulation analysis software combined with laboratory-made "under the influence of mining variable sliding surface slope similar simulation test bed", and to propose identification methods for slope stability under the infuence of mining. The results show that mining activities under the slope reduce slope stability. With a decrease in the mining depth ratio, the influence of mining on the slope increases gradually, and the damage to the slope gradually expands, the stability of the slope grad- ually reduces, fracture occurs on the slope toe and the central fissure gradually develops to the surface, and reaches slide threshold when the depth-thickness ratio is 50:1.展开更多
1 Introduction China has a vast area of continental shelf and is very rich in marine resources,but because of the complex geological environment and frequent geological disasters,the utilization of marine resources an...1 Introduction China has a vast area of continental shelf and is very rich in marine resources,but because of the complex geological environment and frequent geological disasters,the utilization of marine resources and the construction of marine engineering are limited(Zhu et al.,2016).As the展开更多
Marine engineering geology is mainly based on the actual project to study the seabed.This provides a variety of engineering geological parameters for the development of marine engineering(Zhu et al.,2016).This is an e...Marine engineering geology is mainly based on the actual project to study the seabed.This provides a variety of engineering geological parameters for the development of marine engineering(Zhu et al.,2016).This is an early展开更多
Based on the monthly mean sea level data obtained from 3 years’ (1999— 2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Res...Based on the monthly mean sea level data obtained from 3 years’ (1999— 2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Results show that the sea surface height at all the tide gauges becomes higher in summer than that in winter, with an obvious seasonal variability. Furthermore the sea surface height measured at a short distance outside the bay is lower than that in the bay, showing a sea surface slope downward from north to south. The reasons for the formation of the slope are explained as well. The dynamic action of the summer monsoon and the sea surface slope, and their effects on the monthly mean current are studied by means of dynamics principles. The importance of the summer monsoon and the pressure gradient generated by the sea surface slope, with their effects on the alongshore current, is pointed out and emphasized in this paper.展开更多
in the design of civil and water conservancy projects, the identical slope suffice isfrequently used. Its mathematical model may be formulated as an envelope of a cone when itS vertexmoves along the cylindrical helix....in the design of civil and water conservancy projects, the identical slope suffice isfrequently used. Its mathematical model may be formulated as an envelope of a cone when itS vertexmoves along the cylindrical helix. According to the principle of conStrUcting the envelope curves of afamily of circles, the parametric equstion for the identical slope surface is established. The parametricform makes it most convenient to draw the contour lines and grade lines, and is well suited toproduce indexed projection of identical slope surface in civil and water conservancy projects.展开更多
The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering applica...The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering application. This paper presents a systematic numerical investigation on effects of deflection angles(30°, 60°, 90°, 120°, 150°, and 180°) on flow phenomena and their evolution in open-channel bends using a Re-Normalization Group(RNG) κ-ε model and a volume of fluid(VOF) method. The numerical results indicate that the deflection angle is a key factor for flows in bends. It is shown that the maximum transverse slope of water surface occurs at the middle cross section of a bend, and it increases with the deflection angle. Besides a major vortex, or, the primary circulation cell near the channel bottom, a secondary vortex, or, an outer bank cell, may also appear above the former and near the outer bank when the deflection angle is sufficiently large, and it will gradually migrate towards the inner bank and evolve into an inner bank cell. The strength of the secondary circulations increases with the deflection angle. The simulation demonstrates that there is alow-stress zone on the bed near the outer bank and a high-stress zone on the bed near the inner bank, and both of them increase in size with the deflection angle. The maximum of shear stress on the inner bank increases nonlinearly with the angle, and its maximums on the outer bank and on the bed take place when the deflection angle becomes 120°.展开更多
A sandbox experiment model was designed to simulate how differences in rock strength and gravity between two blocks can influence the formation characteristics of thrusts. In the experiment the compression was from on...A sandbox experiment model was designed to simulate how differences in rock strength and gravity between two blocks can influence the formation characteristics of thrusts. In the experiment the compression was from one direction with basement shortening and the initial surfaces of the model were oblique. The results show that if the initial surface was horizontal or the slope angle was smaller than 7°, the compression induced two groups of thrusts with opposite dip orientations. If the slope angle of the initial surface was greater than 7°, the compression induced only one group of thrusts with a dip orientation contrary to the original compression direction. This result is similar to the actual section of a collision zone between two continental blocks. By applying stress analysis, rock strength is shown to be an important factor in deformation. As other boundary conditions are changeless, it is the change of gravitational potential energy that leads to different deformation styles.展开更多
Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-w...Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-world situations.This study developed several fixed-bed river models with various curvatures to determine the effect of Froude similitude deviation on curved channel modeling.Models were constructed according to the characteristics of the Middle Yangtze River.Differences in longitudinal slope,transverse slope,and main stream line location were measured by varying Froude similitude deviation.The deviations of longitudinal slope and velocity were negligible because friction similitude was accounted for.The transverse slope varied significantly with the Froude similitude deviation,and the main stream line varied with the curvature and Froude similitude deviation.Formulae were derived to estimate the slope deviation.These analyses helped to clarify the feasibility of the method of Froude similitude deviation for curved channels.展开更多
Rapids and shoals in the channel have a huge impact on the safety of the ship navigation, Based on the principle of a rubber dam can always adjust the height of the dam and raise upstream water level, This thesis crea...Rapids and shoals in the channel have a huge impact on the safety of the ship navigation, Based on the principle of a rubber dam can always adjust the height of the dam and raise upstream water level, This thesis creatively proposed the principle which applied to rapids and shoals in the Channel. In order to achieve the purpose of assisting ship through the channel safely. In this paper, through theoretical calculations verified the rubber dam has characteristics of raising water level, increasing the depth of the shoals, reducing the flow velocity, reducing water surface slope and improving the conditions of navigation. Therefore, this study has a wide range of practical value and application prospects in the project展开更多
Based on the monthly average sea level data from the tide gauge measurement(1999-2001), the seasonal variability of the sea level in the Northern and Middle Yellow Sea isstudied to reveal that the sea surface height a...Based on the monthly average sea level data from the tide gauge measurement(1999-2001), the seasonal variability of the sea level in the Northern and Middle Yellow Sea isstudied to reveal that the sea surface height at all the tide gauges becomes higher in summer thanthat in winter. In addition, the sea surface height of the Northern Yellow Sea is higher than theone of the Middle Yellow Sea with a slope downward from the north to the south in summer, while itis lower with a reversed slope in winter. The seasonal reverse of the sea surface slope can beattributed to the monsoon effects i. e. the annual reverse of the monsoon direction and the annualvariation of the monsoon rainfall. A set of equations are established in light of the dynamicprinciples to expound how the monsoon forcing and the sea surface slope generate a summer outflowand a winter inflow in the Yellow Sea.展开更多
Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this world, we study these class of surfaces in the 3-d...Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this world, we study these class of surfaces in the 3-dimensional Minkowski space L^3. We achieve a complete classification of spacelike generalized constant ratio surfaces in L^3.展开更多
The unified displacement function(UDF)is presented to describe the deformation behaviours of the tunnel profile along with time under the surface slope condition.Based on the discrete Fourier method,the third-order UD...The unified displacement function(UDF)is presented to describe the deformation behaviours of the tunnel profile along with time under the surface slope condition.Based on the discrete Fourier method,the third-order UDF in the physical plane is expanded to the Laurent series in the complex variable plane.The complex variable method is employed to derive the elastic analytical solution of stra-tum displacement,when the third-order UDF is taken as the displacement boundary condition of tunnel cross-section(DBCTC).The proposed elastic solution agrees well with the results of the finite element method for the consistent model,which verifies the correctness of the proposed analytical solution.Combining the corresponding principle and fractional Generalized Kelvin viscoelastic constitutive model,the fractional viscoelastic solution under the surface slope condition is determined.The time effect of stratum displacement is presented in two aspects:time-dependent DBCTC and time-dependent material parameters.The parameter analysis is performed to investigate influences of deformation modes of the third-order UDF,slope angle,tunnel radius and fractional order on the time effect of stratum vertical and horizontal displacement.展开更多
The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this s...The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this study, field tests were performed at different time scales, a control group was established, organic material–plant joint restoration technology was proposed as an optimized management measure, and the erosion control mechanism and restoration mode of organic material–plant joint restoration technology were analyzed. Based on the obtained experimental data, a Water Erosion Prediction Project(WEPP)-based hydraulic erosion model was constructed, sensitivity parameters were calibrated, and the soil erosion intensity and corresponding spatial distribution in the watershed of the study area were simulated via the geo-spatial interface for WEPP(GeoWEPP) after organic material–plant joint restoration technology was adopted to predict the effect of optimized management measures. The results showed that among the slopes with different restoration measures, organic material–plant joint restoration technology effectively controlled loess slope erosion, and the average erosion modulus of the organic material–grass and shrub transplantation slope reached only 23.37 t/km^(2), which is a decrease of 97.68% relative to the traditional grass–shrub protection slope. Moreover, the sand content of the joint restoration slope was reduced by 392.41 g/L relative to the bare slope, reaching only 0.29 g/L, and the runoff yield was reduced by 8.88 L/min. The GeoWEPP modeling results revealed that the total runoff yield and average annual erosion modulus of the watershed were lower after joint restoration than during the prerestoration period. Similarly, the total runoff yield of the watershed was 4.6%, the simulated 10-year average annual total sand production reached 2048.3 t,and the average annual erosion modulus was 582.75 t/km^(2), which is 52.15% lower than that under untreated conditions. This study provides a new strategy for solving soil erosion problems and restoring the ecology of slopes after managing ditches and implementing land projects.展开更多
The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the ...The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains.展开更多
Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to u...Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake (the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investi- gated the variations of seasonal WLF in China's Poyang Lake by comparing the water levels during the four distinct seasons (the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope (WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magni- tude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poy- ang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake in- teractions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a rep- resentative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.展开更多
基金supported by Research and Development for KMA Weather, Climate, and Earth System Services (Grant No. NIMS-2016-3100)
文摘The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
文摘This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfaces of alpine environments.They are an empirical method based on the linear relationship between net radiation and global solar radiation and a flux-by-flux method involving the estimation of all the individual components of radiation budget independently.The results show that the empirical method is capable of predicting hourly net radiation on sloping sur- faces to within about±53 W m^(-2) under all sky conditions.During clear sky conditions,it could predict net radiation on slopes to within±58 W m^(-2) or 16% of the measured values.The flux-by-flux method,although it did not perform as well as the empirical method,performed adequately and could give estimates of net radiation on slopes with root mean square error of less than 74 W m^(-2)(20%)and a mean bias error of 27 W m^(-2)(7%).
基金This work is financially supported by the National Natural Science Foundation of China(No.49676277)863-818 Project(05-02)
文摘A joint probability density function (PDF) for surface slopes in two arbitrary directions is derived on the basis of Longuet Higgins's linear model for three-dimensionol (3-D) random wave field. and the correlation moments of surface slopes. as parameters in the PDF, are expressed in terms of directional spectrum of ocean waves. So long as the directional spectrum model is given, these parameters are determined. Since the directional spectrum models proposed so far are mostly parameterized by the wind speed and fetch, this allows for substituting these parameters with thc wind speed and fetch. As an example, the wind speed and fetch are taken to be 14 m ' s and 200 km, and the Hasselmann and Donclan directional spectra are, respectively, use to compute these parameters. Some novel results a reobtained. One of the increasing interesting results is that the variances of surface slope in downwind and cross-wind directions determined by the Donclan directional spectra are close to those measured by Cox and Munk (1954). Some discussions are made on these results.
文摘The formation of the identical slope surface and the method of construction are discussed. On the basement of building the parameter equation of variable-radius circle family envelope, the frequently used parameter equation of the identical slope surface of the top of taper moving along column helix, horizental arc and line is built. The equation can be used to construct the identical slope surface’s contours, gradient lines and three dimensional figures correctly.
基金Supported by the National Science Foundation of China(No.40971185)the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)
文摘The principle of ocean wave spectrometers was first presented several decades ago to detect the directional wave spectrum with real-aperture radar(Jackson,1981). To invert wave spectra using an ocean wave spectrometer,for simplicity,the hydrodynamic forcing and wave-wave interaction effect are neglected and a Gaussian slope probability density function(pdf) is used to calculate the normalized backscattering cross-section( σ 0) of the ocean surface. However,the real sea surface is non-Gaussian. It is not known whether the non-Gaussian property of the sea surface will affect the performance of the inversion of the wave spectrum if following existing inversion steps and methods. In this paper,the pdf of the sea surface slope is expressed as a Gram-Charlier fourth-order expansion,which is quasi-Gaussian. The modulation transfer function(MTF) is derived for a non-Gaussian slope pdf. The effects of non-Gaussian properties of the sea surface slope on the inversion process and result are then studied in a simulation of the SWIM(Surface Waves Investigation and Monitoring) instrument configuration to be used on the CFOSAT(China-France Oceanography Satellite) mission. The simulation results show that the mean trend of σ 0 depends on the sea slope pdf,and the peakedness and skewness coefficients of the slope pdf affect the shape of the mean trend of σ 0 versus incidence and azimuth; owing to high resolution of σ 0 in the range direction,MTF obtained using the mean trend of σ 0 is almost as accurate as that set in the direct simulation; in the inversion,if ignoring the non-Gaussian assumption,the inversion performances for the wave spectrum decrease,as seen for an increase in the energy error of the inverted wave slope spectrum. However,the peak wavelength and wave direction are the same for inversions that consider and ignore the non-Gaussian property.
文摘In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformarion and damage of bedding sliding with depth-thickness ratios of 200:1,150:1,120:1,100:1 and 50:1 by adopting numerical simulation analysis software combined with laboratory-made "under the influence of mining variable sliding surface slope similar simulation test bed", and to propose identification methods for slope stability under the infuence of mining. The results show that mining activities under the slope reduce slope stability. With a decrease in the mining depth ratio, the influence of mining on the slope increases gradually, and the damage to the slope gradually expands, the stability of the slope grad- ually reduces, fracture occurs on the slope toe and the central fissure gradually develops to the surface, and reaches slide threshold when the depth-thickness ratio is 50:1.
基金supported by NSFC Open Research Cruise (Cruise No. NORC2015-05 and Cruise No. NORC2015-06)funded by Shiptime Sharing Project of NSFC
文摘1 Introduction China has a vast area of continental shelf and is very rich in marine resources,but because of the complex geological environment and frequent geological disasters,the utilization of marine resources and the construction of marine engineering are limited(Zhu et al.,2016).As the
基金support ed by NSFC Open Research Cruise (Cruise No. NORC2 015-05 and Cruise No. NORC2015-06)funded by Shipti me Sharing Project of NSFC
文摘Marine engineering geology is mainly based on the actual project to study the seabed.This provides a variety of engineering geological parameters for the development of marine engineering(Zhu et al.,2016).This is an early
基金The paper is supported by the program: ARGO Observation and Research in the Pacific-India Warm Pool (2002CB714001)the National Key Programme for Developing Basic Sciences of China under the contract No.G1998040900 (Part 1).
文摘Based on the monthly mean sea level data obtained from 3 years’ (1999— 2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Results show that the sea surface height at all the tide gauges becomes higher in summer than that in winter, with an obvious seasonal variability. Furthermore the sea surface height measured at a short distance outside the bay is lower than that in the bay, showing a sea surface slope downward from north to south. The reasons for the formation of the slope are explained as well. The dynamic action of the summer monsoon and the sea surface slope, and their effects on the monthly mean current are studied by means of dynamics principles. The importance of the summer monsoon and the pressure gradient generated by the sea surface slope, with their effects on the alongshore current, is pointed out and emphasized in this paper.
文摘in the design of civil and water conservancy projects, the identical slope suffice isfrequently used. Its mathematical model may be formulated as an envelope of a cone when itS vertexmoves along the cylindrical helix. According to the principle of conStrUcting the envelope curves of afamily of circles, the parametric equstion for the identical slope surface is established. The parametricform makes it most convenient to draw the contour lines and grade lines, and is well suited toproduce indexed projection of identical slope surface in civil and water conservancy projects.
基金supported by the National Natural Science Foundation of China(Grant No:51579162,51879174 and 51379137)the Open Funds of the State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University(SKHL1301,SKHL1509)
文摘The deflection angle of a river bend plays an important role on behaviours of the flow within it, and a clear understanding of the angle's influence is significant in both theoretical study and engineering application. This paper presents a systematic numerical investigation on effects of deflection angles(30°, 60°, 90°, 120°, 150°, and 180°) on flow phenomena and their evolution in open-channel bends using a Re-Normalization Group(RNG) κ-ε model and a volume of fluid(VOF) method. The numerical results indicate that the deflection angle is a key factor for flows in bends. It is shown that the maximum transverse slope of water surface occurs at the middle cross section of a bend, and it increases with the deflection angle. Besides a major vortex, or, the primary circulation cell near the channel bottom, a secondary vortex, or, an outer bank cell, may also appear above the former and near the outer bank when the deflection angle is sufficiently large, and it will gradually migrate towards the inner bank and evolve into an inner bank cell. The strength of the secondary circulations increases with the deflection angle. The simulation demonstrates that there is alow-stress zone on the bed near the outer bank and a high-stress zone on the bed near the inner bank, and both of them increase in size with the deflection angle. The maximum of shear stress on the inner bank increases nonlinearly with the angle, and its maximums on the outer bank and on the bed take place when the deflection angle becomes 120°.
基金This paper is supported by the project IGCP411(3-3-02-24) .
文摘A sandbox experiment model was designed to simulate how differences in rock strength and gravity between two blocks can influence the formation characteristics of thrusts. In the experiment the compression was from one direction with basement shortening and the initial surfaces of the model were oblique. The results show that if the initial surface was horizontal or the slope angle was smaller than 7°, the compression induced two groups of thrusts with opposite dip orientations. If the slope angle of the initial surface was greater than 7°, the compression induced only one group of thrusts with a dip orientation contrary to the original compression direction. This result is similar to the actual section of a collision zone between two continental blocks. By applying stress analysis, rock strength is shown to be an important factor in deformation. As other boundary conditions are changeless, it is the change of gravitational potential energy that leads to different deformation styles.
基金supported by the Project of Subsequent Work of the Three Gorges Project(Grant No.SXHXGZ-2020-3).
文摘Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-world situations.This study developed several fixed-bed river models with various curvatures to determine the effect of Froude similitude deviation on curved channel modeling.Models were constructed according to the characteristics of the Middle Yangtze River.Differences in longitudinal slope,transverse slope,and main stream line location were measured by varying Froude similitude deviation.The deviations of longitudinal slope and velocity were negligible because friction similitude was accounted for.The transverse slope varied significantly with the Froude similitude deviation,and the main stream line varied with the curvature and Froude similitude deviation.Formulae were derived to estimate the slope deviation.These analyses helped to clarify the feasibility of the method of Froude similitude deviation for curved channels.
文摘Rapids and shoals in the channel have a huge impact on the safety of the ship navigation, Based on the principle of a rubber dam can always adjust the height of the dam and raise upstream water level, This thesis creatively proposed the principle which applied to rapids and shoals in the Channel. In order to achieve the purpose of assisting ship through the channel safely. In this paper, through theoretical calculations verified the rubber dam has characteristics of raising water level, increasing the depth of the shoals, reducing the flow velocity, reducing water surface slope and improving the conditions of navigation. Therefore, this study has a wide range of practical value and application prospects in the project
文摘Based on the monthly average sea level data from the tide gauge measurement(1999-2001), the seasonal variability of the sea level in the Northern and Middle Yellow Sea isstudied to reveal that the sea surface height at all the tide gauges becomes higher in summer thanthat in winter. In addition, the sea surface height of the Northern Yellow Sea is higher than theone of the Middle Yellow Sea with a slope downward from the north to the south in summer, while itis lower with a reversed slope in winter. The seasonal reverse of the sea surface slope can beattributed to the monsoon effects i. e. the annual reverse of the monsoon direction and the annualvariation of the monsoon rainfall. A set of equations are established in light of the dynamicprinciples to expound how the monsoon forcing and the sea surface slope generate a summer outflowand a winter inflow in the Yellow Sea.
基金Acknowledgements This work was supported by the Liaoning Science and Technology Project (No. 201602528), the General Project for Department of Liaoning Education (No. L2014482), the Project funded by China Postdoctoral Science Foundation (Nos. 2016T90226, 2014M560216), and the National Natural Science Foundation of China (Grant Nos. 11601068, 11326068).
文摘Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this world, we study these class of surfaces in the 3-dimensional Minkowski space L^3. We achieve a complete classification of spacelike generalized constant ratio surfaces in L^3.
基金the financial supports from the National Natural Science Foundation of China(Grant No.52025084)the Beijing Natural Science Foundation,China(Grant No.8212007).
文摘The unified displacement function(UDF)is presented to describe the deformation behaviours of the tunnel profile along with time under the surface slope condition.Based on the discrete Fourier method,the third-order UDF in the physical plane is expanded to the Laurent series in the complex variable plane.The complex variable method is employed to derive the elastic analytical solution of stra-tum displacement,when the third-order UDF is taken as the displacement boundary condition of tunnel cross-section(DBCTC).The proposed elastic solution agrees well with the results of the finite element method for the consistent model,which verifies the correctness of the proposed analytical solution.Combining the corresponding principle and fractional Generalized Kelvin viscoelastic constitutive model,the fractional viscoelastic solution under the surface slope condition is determined.The time effect of stratum displacement is presented in two aspects:time-dependent DBCTC and time-dependent material parameters.The parameter analysis is performed to investigate influences of deformation modes of the third-order UDF,slope angle,tunnel radius and fractional order on the time effect of stratum vertical and horizontal displacement.
基金National Natural Science Foundation of China,No.42107179, No.41702335The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project,No.SKLGP2021Z021, No.SKLGP2022Z005。
文摘The large-scale management of ditches and implementation of land projects in loess areas have increased the arable land area but have caused considerable engineering issues, resulting in severe soil erosion. In this study, field tests were performed at different time scales, a control group was established, organic material–plant joint restoration technology was proposed as an optimized management measure, and the erosion control mechanism and restoration mode of organic material–plant joint restoration technology were analyzed. Based on the obtained experimental data, a Water Erosion Prediction Project(WEPP)-based hydraulic erosion model was constructed, sensitivity parameters were calibrated, and the soil erosion intensity and corresponding spatial distribution in the watershed of the study area were simulated via the geo-spatial interface for WEPP(GeoWEPP) after organic material–plant joint restoration technology was adopted to predict the effect of optimized management measures. The results showed that among the slopes with different restoration measures, organic material–plant joint restoration technology effectively controlled loess slope erosion, and the average erosion modulus of the organic material–grass and shrub transplantation slope reached only 23.37 t/km^(2), which is a decrease of 97.68% relative to the traditional grass–shrub protection slope. Moreover, the sand content of the joint restoration slope was reduced by 392.41 g/L relative to the bare slope, reaching only 0.29 g/L, and the runoff yield was reduced by 8.88 L/min. The GeoWEPP modeling results revealed that the total runoff yield and average annual erosion modulus of the watershed were lower after joint restoration than during the prerestoration period. Similarly, the total runoff yield of the watershed was 4.6%, the simulated 10-year average annual total sand production reached 2048.3 t,and the average annual erosion modulus was 582.75 t/km^(2), which is 52.15% lower than that under untreated conditions. This study provides a new strategy for solving soil erosion problems and restoring the ecology of slopes after managing ditches and implementing land projects.
文摘The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains.
基金National Basic Research Program of China ("973" Program), No.2012CB417006 National Natural Science Foundation of China, No.41171024 No.41271500
文摘Seasonal water-level fluctuations (WLF) play a dominate role in lacustrine ecosys- tems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake (the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investi- gated the variations of seasonal WLF in China's Poyang Lake by comparing the water levels during the four distinct seasons (the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope (WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magni- tude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poy- ang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake in- teractions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a rep- resentative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.