Under the condition of low gravity the characteristics of liquid forced sloshing in a turning spherical tank with a spacer were investigated. The static shape of the liquid surface was analyzed. By expanding the chara...Under the condition of low gravity the characteristics of liquid forced sloshing in a turning spherical tank with a spacer were investigated. The static shape of the liquid surface was analyzed. By expanding the characteristic functions, the frequencies and velocity potential of liquid free-sloshing were derived. The governing equations and boundary conditions for the forced sloshing of liquid under the tank turning were established. The transverse force of liquid acting on the tank and the moment of force to the centre of the tank which is caused by the force of liquid acting on the spacer were given. Numerical results were compared with the ones of the spherical tank without a spacer. The results show that when a spacer is inserted in the tank, the sloshing frequency of liquid and the transverse force of liquid acting on the tank will decrease, but the moment of force to the centre of the tank which is caused by the force of liquid acting on the spacer will occur.展开更多
基金supported by the Scientific Research Foundation of Anhui (Grant No.00021090)the Natural Science Foundation of Jiansu Higher Education(Grant No.02KJD13004)
文摘Under the condition of low gravity the characteristics of liquid forced sloshing in a turning spherical tank with a spacer were investigated. The static shape of the liquid surface was analyzed. By expanding the characteristic functions, the frequencies and velocity potential of liquid free-sloshing were derived. The governing equations and boundary conditions for the forced sloshing of liquid under the tank turning were established. The transverse force of liquid acting on the tank and the moment of force to the centre of the tank which is caused by the force of liquid acting on the spacer were given. Numerical results were compared with the ones of the spherical tank without a spacer. The results show that when a spacer is inserted in the tank, the sloshing frequency of liquid and the transverse force of liquid acting on the tank will decrease, but the moment of force to the centre of the tank which is caused by the force of liquid acting on the spacer will occur.