In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stai...In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromech- anisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650℃.展开更多
The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the dif...The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the different strain rates in the solution were investigated, and the fracture morphologies and compositions of corrosion products under the different strain rates were analyzed with scanning electron microscopy(SEM) and energy dispersive spectrometerry(EDS), respectively. The experimental results show that the SCC sensitivity index is the highest when the strain rate is 2×10-6, and the medium corrosion is the main reason resulting in the highest SCC sensitivity index. The SCC sensitivity index is the least when the strain rate is 5×10-6, and the stress is the main reason resulting in the stress corrosion. The SCC sensitivity index is the middle when the strain rate is 9×10-6, the interaction of stress and medium is the stress corrosion fracture mechanism.展开更多
The stress corrosion cracking(SCC) susceptibility of 2297 Al-Li alloy in 1 M Na Cl +0.01 M H2O2 solution(CP solution) and 1 M NaCl + 0.01 M H2O2+ 0.6 M Na2SO4 solution(CPS solution) was investigated by slow-strain rat...The stress corrosion cracking(SCC) susceptibility of 2297 Al-Li alloy in 1 M Na Cl +0.01 M H2O2 solution(CP solution) and 1 M NaCl + 0.01 M H2O2+ 0.6 M Na2SO4 solution(CPS solution) was investigated by slow-strain rate tests at various strain rates ranging from 10-5s(-1) to 10-7s-1. The roles of H2O2 and SO42-in the corrosion process were estimated by potentiodynamic polarization and electrochemical impedance spectroscopy. 2297 Al-Li alloy does not fracture ascribed to SCC in CP solution, while it undergoes SCC in CPS solution. In CPS solution,with a decreasing strain rate from 10-5s(-1) to 10-7s-1, the SCC susceptibility firstly rises and then declines exhibiting a peak value at a strain rate of 10-6s-1. H2O2 promotes the active dissolution while SO42- lowers the corrosion rate. The SCC fracture is associated with a decline in the dissolution rate of the crack tip by SO42-, which leads to stress concentration. In CPS solution, a reduction in the local dissolution rate of the crack tip leads to stress concentration, resulting in SCC fracture.As the preferred initiation site for a crack, pits also show a noteworthy effect on SCC of 2297 Al-Li alloy.展开更多
基金supported by AB Sandvik Material Technology in Sweden and the Swedish Energy Agency through the Research Consortium of Materials Technology for Thermal Energy Processes(KME-501)Agora Materiae and the Strategic Faculty Grant AFM(SFO-MAT-LiU#2009-00971)at Linkping University
文摘In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromech- anisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650℃.
基金Funded by the Key Research and Development Project of Jiangsu Province(BE2016052)
文摘The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the different strain rates in the solution were investigated, and the fracture morphologies and compositions of corrosion products under the different strain rates were analyzed with scanning electron microscopy(SEM) and energy dispersive spectrometerry(EDS), respectively. The experimental results show that the SCC sensitivity index is the highest when the strain rate is 2×10-6, and the medium corrosion is the main reason resulting in the highest SCC sensitivity index. The SCC sensitivity index is the least when the strain rate is 5×10-6, and the stress is the main reason resulting in the stress corrosion. The SCC sensitivity index is the middle when the strain rate is 9×10-6, the interaction of stress and medium is the stress corrosion fracture mechanism.
基金co-supported by the National Nature Science Foundations of China (No. 51671013)Beijing Nova Program of China (No. Z161100004916061)
文摘The stress corrosion cracking(SCC) susceptibility of 2297 Al-Li alloy in 1 M Na Cl +0.01 M H2O2 solution(CP solution) and 1 M NaCl + 0.01 M H2O2+ 0.6 M Na2SO4 solution(CPS solution) was investigated by slow-strain rate tests at various strain rates ranging from 10-5s(-1) to 10-7s-1. The roles of H2O2 and SO42-in the corrosion process were estimated by potentiodynamic polarization and electrochemical impedance spectroscopy. 2297 Al-Li alloy does not fracture ascribed to SCC in CP solution, while it undergoes SCC in CPS solution. In CPS solution,with a decreasing strain rate from 10-5s(-1) to 10-7s-1, the SCC susceptibility firstly rises and then declines exhibiting a peak value at a strain rate of 10-6s-1. H2O2 promotes the active dissolution while SO42- lowers the corrosion rate. The SCC fracture is associated with a decline in the dissolution rate of the crack tip by SO42-, which leads to stress concentration. In CPS solution, a reduction in the local dissolution rate of the crack tip leads to stress concentration, resulting in SCC fracture.As the preferred initiation site for a crack, pits also show a noteworthy effect on SCC of 2297 Al-Li alloy.