Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical stud...Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.展开更多
Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be...Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.展开更多
The frequency domain analysis of systems is an important topic in control theory. Powerful graphical tools exist in classic control, such as the Nyquist plot, Bode plots, and Nichols chart. These methods have been wid...The frequency domain analysis of systems is an important topic in control theory. Powerful graphical tools exist in classic control, such as the Nyquist plot, Bode plots, and Nichols chart. These methods have been widely used to evaluate the frequency domain behavior of system. A literature survey shows that various approaches are available for the computation of the frequency response of control systems under different types of parametric dependencies, such as affine, multi-linear, polynomial, etc. However, there is a lack of tools in the literature to construct the Bode envelopes for the general nonlinear type of parametric dependencies. In this paper, we address the problem of computation of the envelope of Bode frequency response of a non-rational transfer function with nonlinear parametric uncertainties varying over a box. We propose two techniques to compute the Bode envelopes:first, based on the natural interval extensions (NIE) combined with uniform subdivision and second, based on the existing Taylor model combined with subdivision strategy. We also propose the algorithms to further speed up both methods through extrapolation techniques.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579146,51490674,and51609101)the Shanghai Rising-Star Program(Grant No.16QA1402300)
文摘Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.
基金Supported by National Natural Science Foundation of China (No.61202261,No.61173102)NSFC Guangdong Joint Fund(No.U0935004)Opening Foundation of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of China(No.93K172012K02)
文摘Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.
文摘The frequency domain analysis of systems is an important topic in control theory. Powerful graphical tools exist in classic control, such as the Nyquist plot, Bode plots, and Nichols chart. These methods have been widely used to evaluate the frequency domain behavior of system. A literature survey shows that various approaches are available for the computation of the frequency response of control systems under different types of parametric dependencies, such as affine, multi-linear, polynomial, etc. However, there is a lack of tools in the literature to construct the Bode envelopes for the general nonlinear type of parametric dependencies. In this paper, we address the problem of computation of the envelope of Bode frequency response of a non-rational transfer function with nonlinear parametric uncertainties varying over a box. We propose two techniques to compute the Bode envelopes:first, based on the natural interval extensions (NIE) combined with uniform subdivision and second, based on the existing Taylor model combined with subdivision strategy. We also propose the algorithms to further speed up both methods through extrapolation techniques.