In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the...In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the chemical properties. The clayey soil samples were taken from the region of Teziutlán-Puebla-Mexico. Yield stress was calculated using the slump test in cylindrical geometry. Results show three zones. The first one shows an exponential decrement on yield stress due to lower water content in accord with clayey soils with high content of illita, followed by a second region where yield stress decreases dramatically at a certain critical water concentration, and the third one where yield stress dependence is not well-defined since the clayey soil flow is seen. Finally, it is discussed how yield stress variation due to the water increment influences the landslide risk increment.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
文摘In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the chemical properties. The clayey soil samples were taken from the region of Teziutlán-Puebla-Mexico. Yield stress was calculated using the slump test in cylindrical geometry. Results show three zones. The first one shows an exponential decrement on yield stress due to lower water content in accord with clayey soils with high content of illita, followed by a second region where yield stress decreases dramatically at a certain critical water concentration, and the third one where yield stress dependence is not well-defined since the clayey soil flow is seen. Finally, it is discussed how yield stress variation due to the water increment influences the landslide risk increment.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.