Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derive...Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.展开更多
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm...Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.展开更多
This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of...This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of graded beds on the reaction process of diesel hydrocracking.Three hydrocracking catalysts with different physicochemical properties as gradation components,the diesel hydrocracking reaction on catalyst systems of one-component,two-component and three-component graded beds with different loading sequences are carried out and evaluated,respectively.The catalytic mechanism of the multi-component grading system is analyzed.The results show that,with the increase of the number of grading beds,the space velocity of reaction on each catalyst increases,which can effectively control the overreaction process;along the flow direction of feedstock,the loading sequences of catalysts with acidity decreasing and pore properties increasing can satisfy the demand of different catalytic activity for the conversion of reactant with changing composition to naphtha,which has a guiding role in the conversion of feedstock to target products.Therefore,the conversion of diesel,the selectivity and yield of naphtha all increase significantly on the multi-component catalyst system.The research on the grading technology of multi-component catalysts is of great significance to the promotion and application of catalyst systems in various catalytic fields.展开更多
To deeply understand the effects of support properties on the performance of Mo-based slurry-phase hydrocracking catalysts,four Mo-based catalysts supported on amorphous silica alumina(ASA),γ-Al_(2)O_(3),ultra-stable...To deeply understand the effects of support properties on the performance of Mo-based slurry-phase hydrocracking catalysts,four Mo-based catalysts supported on amorphous silica alumina(ASA),γ-Al_(2)O_(3),ultra-stable Y(USY)zeolite and SiO_(2) were prepared by the incipient wetness impregnation method,respectively,and their catalytic performances were compared in the vacuum residue(VR)hydrocracking process.It is found that the Mo/ASA catalyst exhibits the highest VR conversion among the different catalysts,indicating that both the appropriate amount of acid sites,especially B acid sites and larger mesoporous volume of ASA can enhance the VR hydrocracking into light distillates.Furthermore,Mo catalysts supported on the different supports show quite different product distributions in VR hydrocracking.The Mo/ASA catalyst provides higher yields of naphtha and middle distillates and lower yields of gas and coke compared with other catalysts,it is attributed to the highest MoS_(2) slab dispersion,the highest sulfuration degree of Mo species,and the most Mo atoms located at the edge sites for the Mo/ASA catalyst,as observed by HRTEM and XPS analyses.These features of Mo/ASA are beneficial for the hydrogenation of intermediate products and polycyclic aromatic hydrocarbons to restrict the gas and coke formation.展开更多
A series of functionalized USY/SiO_(2) zeolite composite supports were synthesized using the coating coprecipitation method,with tetraethyl orthosilicate(TEOS)as the silicon source and different ratios of USY to TEOS....A series of functionalized USY/SiO_(2) zeolite composite supports were synthesized using the coating coprecipitation method,with tetraethyl orthosilicate(TEOS)as the silicon source and different ratios of USY to TEOS.Active metals nickel(Ni)and molybdenum(Mo)were loaded onto the supports using the impregnation method.Finally,a series of hydrogenation catalysts were synthesized.The characterization results showed that,compared with the USY catalyst,the addition of a certain quantity of SiO_(2) resulted in the disappearance of the strong acid sites on the catalyst,the number of weak acid and medium strong acid sites decreased,and a certain number of secondary mesoporous structures were formed.The addition of SiO_(2) reduced the secondary cracking of benzene,toluene,xylene,and ethylbenzene(BTXE)effectively,while excessive amounts of SiO_(2) reduced the hydrogenation activity of the catalyst,leading to a decline in the final yield of BTXE.At a maximum SiO_(2) content of 45%,the hydrogenation depth of light cycle oil(LCO)reached an optimum value.The hydrogenation performance of LCO was investigated in a fixed bed reactor at 380℃,4 MPa,and H2/oil volume ratio of 800:1,where the gasoline and diesel fractions reached 80.00%and 16.74%,respectively.NiMo-YS45 had the highest BTXE selectivity,and the final yield of BTXE reached 21.27%.展开更多
The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable f...The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation.展开更多
The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore si...The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.展开更多
One of the commercial means to convert heavy oil residue is hydrocracking in an ebullated bed. The ebullated bed reactor includes a complex gas–liquid–solid backmixed system which attracts the attention of many scie...One of the commercial means to convert heavy oil residue is hydrocracking in an ebullated bed. The ebullated bed reactor includes a complex gas–liquid–solid backmixed system which attracts the attention of many scientists and research groups. This work is aimed at the calculation of the internal recycle flow rate and understanding its effect on other parameters of the ebullated bed. Measured data were collected from an industrial scale residual hydrocracking unit consisting of a cascade of three ebullated bed reactors. A simplified block model of the ebullated bed reactors was created in Aspen Plus and fed with measured data. For reaction yield calculation, a lumped kinetic model was used. The model was verified by comparing experimental and calculated distillation curves as well as the calculated and measured reactor inlet temperature. Influence of the feed rate on the recycle ratio(recycle to feed flow rate) was estimated. A relation between the recycle flow rate, pump pressure difference and catalyst inventory has been identified. The recycle ratio also affects the temperature gradient along the reactor cascade. Influence of the recycle ratio on the temperature gradient decreased with the cascade member order.展开更多
Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable dev...Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.展开更多
In this study,selective dealumination of Beta zeolites was performed through partially removing the templating agent in Beta zeolites by calcination and then removing the aluminum on the external surface of Beta zeoli...In this study,selective dealumination of Beta zeolites was performed through partially removing the templating agent in Beta zeolites by calcination and then removing the aluminum on the external surface of Beta zeolites with acid treatment.Hydrocracking catalysts were prepared by loading WO_(3)onto these dealuminated Beta zeolites.It was shown that the surface SiO_(2)/Al_(2)O_(3)of selectively dealuminated Beta zeolites was higher than that of conventionally dealuminated samples for the same bulk SiO_(2)/Al_(2)O_(3),and the hydrogenation activity of the catalyst of the selectively dealuminated Beta zeolites was lower than that of conventionally dealuminated Beta zeolites.The experimental results for tetralin hydrocracking to BTX showed that the catalysts based on the selectively dealuminated Beta zeolites had higher BTX selectivity and lower coke formation rate than that the catalysts based on the conventionally dealuminated Beta zeolites.展开更多
The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the...The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.展开更多
A new solid acid was prepared by trifluoromethanesulfonic acid (TFMSA) impregnation into an acid‐treated attapulgite (ATA). Di(1‐naphthyl)methane (DNM) hydrocracking was used as the probe reaction to evaluat...A new solid acid was prepared by trifluoromethanesulfonic acid (TFMSA) impregnation into an acid‐treated attapulgite (ATA). Di(1‐naphthyl)methane (DNM) hydrocracking was used as the probe reaction to evaluate the catalytic performance of TFMSA/ATA for cleaving Car–Calk bridged bonds in coals. The results show that DNM was specifically hydrocracked to naphthalene and 1‐methylnaphthalene over TFMSA/ATA in methanol in the absence of gaseous hydrogen. In partic‐ular, TFMSA/ATA was demonstrated to be stable after four cycles with slight loss in catalytic activi‐ty. Furthermore, a proposed H+transfer mechanism successfully interprets the TFMSA/ATA‐cata‐lyzed hydrocracking reaction of DNM.展开更多
To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selectiv...To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selective ring-opening.By selecting more acidic molecular sieves,the problem of poor selectivity of conventional materials can be solved to properly match up to the hydrogenation performance of catalysts.Compared with the performance of previous catalysts,the quality of the tail oil achieved by the said catalysts is better,and the BMCI is reduced by 1—2 units.In the long cycle operation of the petroleum industry,the good quality of the tail oil has been verified and the adaptability of the process conditions is good.When the RHC-1 catalyst is used to process heavy feed under medium pressure,a BMCI value of about12 can be obtained along with a nearly 60%yield of tail oil.The total yield of chemical raw material(steaming cracking feed+catalytic reforming feed)can exceed 80%,and the hydrogen consumption has dropped by nearly 50%as compared to the conventional hydrocracking conversion rate.When processing a mixed CGO and VGO feed with the full conversion mode under a hydrogen pressure of 13.0 MPa,the RHC-5 catalyst can yield about 68.4%of heavy naphtha with a potential aromatic content of up to 50.6,while the total yield of chemical raw materials can reach more than 98%.The results of industrial application of these catalysts show that more than 30%of high quality tail oil can be obtained via processing of inferior quality feed,and its BMCI value can reach 10.7.The total yield of chemical raw materials can reach more than65%.The industrial operation process has implemented two operating cycles totaling 8 years.展开更多
The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to descri...The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.展开更多
Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that th...Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.展开更多
In this work,NiMo catalysts with various contents of MoO_(3)were prepared through incipient wetness impregnation by a twostep method(NMxA)and onepot method(NMxB).The catalysts were then characterized by XRD,XPS,NH3TPD...In this work,NiMo catalysts with various contents of MoO_(3)were prepared through incipient wetness impregnation by a twostep method(NMxA)and onepot method(NMxB).The catalysts were then characterized by XRD,XPS,NH3TPD,H_(2)TPR,HRTEM,and N_(2)adsorptiondesorption technologies.The performance of the NiMo/Al_(2)O_(3) catalysts was investigated by hydrocracking lowtemperature coal tar.When the MoO3 content was 15 wt%,the interaction between Ni species and Al_(2)O_(3) on the NM15B catalyst was stronger than that on the NM15A catalyst,resulting in the poor performance of the former.When the MoO^(3) content was 20 wt%,MoO_(3) agglomerated on the surface of the NM20A catalyst,leading to decreased number of active sites and specific surface area and reduced catalytic performance.The increase in the number of MoS_(2) stack layers strengthened the interaction between Ni and Mo species of the NM20B catalyst and consequently improved its catalytic performance.When the MoO_(3) content reached 25 wt%,the active metals agglomerated on the surface of the NiMo catalysts,thereby directly decreasing the number of active sites.In conclusion,the twostep method is suitable for preparing catalysts with large pore diameter and low MoO_(3) content loading,and the onepot method is more appropriate for preparing catalysts with large specific surface area and high MoO_(3) content.Moreover,the NMxA catalysts had larger average pore diameter than the NMxB catalysts and exhibited improved desulfurization performance.展开更多
Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel L...Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology(FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel(ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number(RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2 G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number(RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2 G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system.展开更多
Conversion of LCO(light cycle oil)to BTX(benzene,toluene,and xylene)is an economically valuable method for refineries.However,this approach still faces difficulties as the main reactions are not clearly understood.Her...Conversion of LCO(light cycle oil)to BTX(benzene,toluene,and xylene)is an economically valuable method for refineries.However,this approach still faces difficulties as the main reactions are not clearly understood.Here we study the detailed hydrocracking pathway of typical reactants,1-methylnaphthalene and tetralin,through molecular simulations and experiments to improve our understanding of the conversion process of LCO to BTX.Molecular simulations demonstrate that the rate-determining step is the isomerization pathway of six-membered ring to five-membered ring in tetralin as its activation energy(ΔEa)is the highest among all the reactions and the order ofΔEa of reactions is isomerization>ring-opening≈side-chain cleavage.The results of experiments show that with the increase in reaction depth,i.e.,through a high temperature(350-370℃)and low LHSV(4.5-6.0 h^(−1)),isomerization,ring-opening,and side-chain cleavage reactions occurred,thus improving the selectivity and yield of alkyl aromatics.展开更多
Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this...Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.展开更多
Three different zeolite catalysts with different pore sizes(MFI-type,BEA-type,and FAU-type zeolites)have been prepared.The influence of different zeolite catalysts on reactivity and product shape selectivity of tetral...Three different zeolite catalysts with different pore sizes(MFI-type,BEA-type,and FAU-type zeolites)have been prepared.The influence of different zeolite catalysts on reactivity and product shape selectivity of tetralin is investigated.Clear differences are observed in the reactivity of tetralin and distribution of products achieved by different catalysts.The diffusion and adsorption behavior of the reactant tetralin and its intermediates,n-butylbenzene and 1-methylindane under the reaction conditions are simulated using molecular simulation methods.Upon combining simulation results and experimental observations,it is shown that the difference in diffusion coefficient and competitive adsorption capacity can explain the reactivity of tetralin and the selectivity of products.The steric hindrance of the MFI-type zeolite mainly limits the key step of ring opening of tetralin,leading to lower selectivity of ring-opening products.n-Butylbenzene molecules can diffuse sufficiently fast in the large pores of FAU-type zeolite and the weak adsorption capacity of n-butylbenzene leads to its insufficient cracking.In addition,it also explains the reason that the BEA-type zeolite has the best BTX selectivity,because it can satisfy both good ring-opening activity and sufficient butylbenzene cracking depth.展开更多
文摘Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.
基金supported by the National Key R&D Program of China(2021YFB3301100)Beijing University of Chemical Technology Interdisciplinary Program(XK2023-07).
文摘Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.
基金National Key R&D Program of China(2021YFA1501203)is acknowledged for financial support.
文摘This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of graded beds on the reaction process of diesel hydrocracking.Three hydrocracking catalysts with different physicochemical properties as gradation components,the diesel hydrocracking reaction on catalyst systems of one-component,two-component and three-component graded beds with different loading sequences are carried out and evaluated,respectively.The catalytic mechanism of the multi-component grading system is analyzed.The results show that,with the increase of the number of grading beds,the space velocity of reaction on each catalyst increases,which can effectively control the overreaction process;along the flow direction of feedstock,the loading sequences of catalysts with acidity decreasing and pore properties increasing can satisfy the demand of different catalytic activity for the conversion of reactant with changing composition to naphtha,which has a guiding role in the conversion of feedstock to target products.Therefore,the conversion of diesel,the selectivity and yield of naphtha all increase significantly on the multi-component catalyst system.The research on the grading technology of multi-component catalysts is of great significance to the promotion and application of catalyst systems in various catalytic fields.
基金The authors acknowledge National Key Research and Development Program of China(2018YFA0209403)National Natural Science Foundation of China(21908027)Qingyuan Innovation Laboratory Program(00121002)for financing this research.
文摘To deeply understand the effects of support properties on the performance of Mo-based slurry-phase hydrocracking catalysts,four Mo-based catalysts supported on amorphous silica alumina(ASA),γ-Al_(2)O_(3),ultra-stable Y(USY)zeolite and SiO_(2) were prepared by the incipient wetness impregnation method,respectively,and their catalytic performances were compared in the vacuum residue(VR)hydrocracking process.It is found that the Mo/ASA catalyst exhibits the highest VR conversion among the different catalysts,indicating that both the appropriate amount of acid sites,especially B acid sites and larger mesoporous volume of ASA can enhance the VR hydrocracking into light distillates.Furthermore,Mo catalysts supported on the different supports show quite different product distributions in VR hydrocracking.The Mo/ASA catalyst provides higher yields of naphtha and middle distillates and lower yields of gas and coke compared with other catalysts,it is attributed to the highest MoS_(2) slab dispersion,the highest sulfuration degree of Mo species,and the most Mo atoms located at the edge sites for the Mo/ASA catalyst,as observed by HRTEM and XPS analyses.These features of Mo/ASA are beneficial for the hydrogenation of intermediate products and polycyclic aromatic hydrocarbons to restrict the gas and coke formation.
基金National Natural Science Foundation of China(Grant No.21968034).
文摘A series of functionalized USY/SiO_(2) zeolite composite supports were synthesized using the coating coprecipitation method,with tetraethyl orthosilicate(TEOS)as the silicon source and different ratios of USY to TEOS.Active metals nickel(Ni)and molybdenum(Mo)were loaded onto the supports using the impregnation method.Finally,a series of hydrogenation catalysts were synthesized.The characterization results showed that,compared with the USY catalyst,the addition of a certain quantity of SiO_(2) resulted in the disappearance of the strong acid sites on the catalyst,the number of weak acid and medium strong acid sites decreased,and a certain number of secondary mesoporous structures were formed.The addition of SiO_(2) reduced the secondary cracking of benzene,toluene,xylene,and ethylbenzene(BTXE)effectively,while excessive amounts of SiO_(2) reduced the hydrogenation activity of the catalyst,leading to a decline in the final yield of BTXE.At a maximum SiO_(2) content of 45%,the hydrogenation depth of light cycle oil(LCO)reached an optimum value.The hydrogenation performance of LCO was investigated in a fixed bed reactor at 380℃,4 MPa,and H2/oil volume ratio of 800:1,where the gasoline and diesel fractions reached 80.00%and 16.74%,respectively.NiMo-YS45 had the highest BTXE selectivity,and the final yield of BTXE reached 21.27%.
文摘The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation.
文摘The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.
基金supported by the Grant APVV-15-0148 provided by the Slovak Research and Development Agency
文摘One of the commercial means to convert heavy oil residue is hydrocracking in an ebullated bed. The ebullated bed reactor includes a complex gas–liquid–solid backmixed system which attracts the attention of many scientists and research groups. This work is aimed at the calculation of the internal recycle flow rate and understanding its effect on other parameters of the ebullated bed. Measured data were collected from an industrial scale residual hydrocracking unit consisting of a cascade of three ebullated bed reactors. A simplified block model of the ebullated bed reactors was created in Aspen Plus and fed with measured data. For reaction yield calculation, a lumped kinetic model was used. The model was verified by comparing experimental and calculated distillation curves as well as the calculated and measured reactor inlet temperature. Influence of the feed rate on the recycle ratio(recycle to feed flow rate) was estimated. A relation between the recycle flow rate, pump pressure difference and catalyst inventory has been identified. The recycle ratio also affects the temperature gradient along the reactor cascade. Influence of the recycle ratio on the temperature gradient decreased with the cascade member order.
基金supported by the National Natural Science Foundation of China (Nos. 21878330, 21676298)the National Science and Technology Major Project, the CNPC Key Research Project (2016E-0707)the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award (No. OSR-2019-CPF-4103.2)。
文摘Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.
文摘In this study,selective dealumination of Beta zeolites was performed through partially removing the templating agent in Beta zeolites by calcination and then removing the aluminum on the external surface of Beta zeolites with acid treatment.Hydrocracking catalysts were prepared by loading WO_(3)onto these dealuminated Beta zeolites.It was shown that the surface SiO_(2)/Al_(2)O_(3)of selectively dealuminated Beta zeolites was higher than that of conventionally dealuminated samples for the same bulk SiO_(2)/Al_(2)O_(3),and the hydrogenation activity of the catalyst of the selectively dealuminated Beta zeolites was lower than that of conventionally dealuminated Beta zeolites.The experimental results for tetralin hydrocracking to BTX showed that the catalysts based on the selectively dealuminated Beta zeolites had higher BTX selectivity and lower coke formation rate than that the catalysts based on the conventionally dealuminated Beta zeolites.
基金the financial support from the National Natural Science Foundation of China(No.2117619)the Shaanxi Province Major Project of Innovation of Science and Technology(No.2008zkc03205,No.2011KTZB03-03-01)
文摘The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.
基金supported by the Fundamental Research Fund for the Central Universities (China University of Mining & Technology,2014ZDPY34)the Priority Academic Program Development of Jiangsu Higher Education Institutions~~
文摘A new solid acid was prepared by trifluoromethanesulfonic acid (TFMSA) impregnation into an acid‐treated attapulgite (ATA). Di(1‐naphthyl)methane (DNM) hydrocracking was used as the probe reaction to evaluate the catalytic performance of TFMSA/ATA for cleaving Car–Calk bridged bonds in coals. The results show that DNM was specifically hydrocracked to naphthalene and 1‐methylnaphthalene over TFMSA/ATA in methanol in the absence of gaseous hydrogen. In partic‐ular, TFMSA/ATA was demonstrated to be stable after four cycles with slight loss in catalytic activi‐ty. Furthermore, a proposed H+transfer mechanism successfully interprets the TFMSA/ATA‐cata‐lyzed hydrocracking reaction of DNM.
基金the financial support from the SINOPEC(No.114016)
文摘To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selective ring-opening.By selecting more acidic molecular sieves,the problem of poor selectivity of conventional materials can be solved to properly match up to the hydrogenation performance of catalysts.Compared with the performance of previous catalysts,the quality of the tail oil achieved by the said catalysts is better,and the BMCI is reduced by 1—2 units.In the long cycle operation of the petroleum industry,the good quality of the tail oil has been verified and the adaptability of the process conditions is good.When the RHC-1 catalyst is used to process heavy feed under medium pressure,a BMCI value of about12 can be obtained along with a nearly 60%yield of tail oil.The total yield of chemical raw material(steaming cracking feed+catalytic reforming feed)can exceed 80%,and the hydrogen consumption has dropped by nearly 50%as compared to the conventional hydrocracking conversion rate.When processing a mixed CGO and VGO feed with the full conversion mode under a hydrogen pressure of 13.0 MPa,the RHC-5 catalyst can yield about 68.4%of heavy naphtha with a potential aromatic content of up to 50.6,while the total yield of chemical raw materials can reach more than 98%.The results of industrial application of these catalysts show that more than 30%of high quality tail oil can be obtained via processing of inferior quality feed,and its BMCI value can reach 10.7.The total yield of chemical raw materials can reach more than65%.The industrial operation process has implemented two operating cycles totaling 8 years.
基金the fund of"National‘Twelfth Five-Year’Plan for Science&Technology Support"(No.2012BAE05B04)"Research on Hydrocracking Catalysts Grading Technology"undertaken by Fushun Research Institute of Petroleum and Petrochemicals(FRIPP)supported by SINOPEC(No.101102)
文摘The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver- sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur- thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to fine-me these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki- netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.
基金financial supports by National Key R&D Program of China(Grant No.2017YFB0306702)are gratefully acknowledged。
文摘Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.
基金Financial support from the National Natural Science Foundation of China (21968034) is gratefully acknowledged.
文摘In this work,NiMo catalysts with various contents of MoO_(3)were prepared through incipient wetness impregnation by a twostep method(NMxA)and onepot method(NMxB).The catalysts were then characterized by XRD,XPS,NH3TPD,H_(2)TPR,HRTEM,and N_(2)adsorptiondesorption technologies.The performance of the NiMo/Al_(2)O_(3) catalysts was investigated by hydrocracking lowtemperature coal tar.When the MoO3 content was 15 wt%,the interaction between Ni species and Al_(2)O_(3) on the NM15B catalyst was stronger than that on the NM15A catalyst,resulting in the poor performance of the former.When the MoO^(3) content was 20 wt%,MoO_(3) agglomerated on the surface of the NM20A catalyst,leading to decreased number of active sites and specific surface area and reduced catalytic performance.The increase in the number of MoS_(2) stack layers strengthened the interaction between Ni and Mo species of the NM20B catalyst and consequently improved its catalytic performance.When the MoO_(3) content reached 25 wt%,the active metals agglomerated on the surface of the NiMo catalysts,thereby directly decreasing the number of active sites.In conclusion,the twostep method is suitable for preparing catalysts with large pore diameter and low MoO_(3) content loading,and the onepot method is more appropriate for preparing catalysts with large specific surface area and high MoO_(3) content.Moreover,the NMxA catalysts had larger average pore diameter than the NMxB catalysts and exhibited improved desulfurization performance.
文摘Because of its high density and low cetane number, the light cycle oil(LCO) containing heavy aromatics(60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology(FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel(ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number(RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2 G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number(RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2 G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system.
基金This work was financially supported by the SINOPEC Science and technology Development Funds(No.12005-1)the Hydrogenation Process and Hydrogenation Catalyst Laboratory(RIPP,SINOPEC).
文摘Conversion of LCO(light cycle oil)to BTX(benzene,toluene,and xylene)is an economically valuable method for refineries.However,this approach still faces difficulties as the main reactions are not clearly understood.Here we study the detailed hydrocracking pathway of typical reactants,1-methylnaphthalene and tetralin,through molecular simulations and experiments to improve our understanding of the conversion process of LCO to BTX.Molecular simulations demonstrate that the rate-determining step is the isomerization pathway of six-membered ring to five-membered ring in tetralin as its activation energy(ΔEa)is the highest among all the reactions and the order ofΔEa of reactions is isomerization>ring-opening≈side-chain cleavage.The results of experiments show that with the increase in reaction depth,i.e.,through a high temperature(350-370℃)and low LHSV(4.5-6.0 h^(−1)),isomerization,ring-opening,and side-chain cleavage reactions occurred,thus improving the selectivity and yield of alkyl aromatics.
文摘Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.
文摘Three different zeolite catalysts with different pore sizes(MFI-type,BEA-type,and FAU-type zeolites)have been prepared.The influence of different zeolite catalysts on reactivity and product shape selectivity of tetralin is investigated.Clear differences are observed in the reactivity of tetralin and distribution of products achieved by different catalysts.The diffusion and adsorption behavior of the reactant tetralin and its intermediates,n-butylbenzene and 1-methylindane under the reaction conditions are simulated using molecular simulation methods.Upon combining simulation results and experimental observations,it is shown that the difference in diffusion coefficient and competitive adsorption capacity can explain the reactivity of tetralin and the selectivity of products.The steric hindrance of the MFI-type zeolite mainly limits the key step of ring opening of tetralin,leading to lower selectivity of ring-opening products.n-Butylbenzene molecules can diffuse sufficiently fast in the large pores of FAU-type zeolite and the weak adsorption capacity of n-butylbenzene leads to its insufficient cracking.In addition,it also explains the reason that the BEA-type zeolite has the best BTX selectivity,because it can satisfy both good ring-opening activity and sufficient butylbenzene cracking depth.