The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment i...The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.展开更多
The source and sink landscape patterns refer to landscape types or units that can either promote positive evolvement of non-point source(NPS) pollution process, or can prevent/defer the ecological process, respectivel...The source and sink landscape patterns refer to landscape types or units that can either promote positive evolvement of non-point source(NPS) pollution process, or can prevent/defer the ecological process, respectively. Therefore, the role of a catchment landscape pattern in nutrient losses can be identified based on the spatial arrangement of source and sink landscapes. To reveal the relations between landscape spatial characteristics and NPS pollution in small catchment, a case study was carried out in a Wangjiagou small catchment of the Three Gorges Reservoir Region(TGRR), China. Google earth imagery for 2015 were processed and used to differentiate source and sink landscape types, and six subcatchments were selected as sample regions for monitoring nitrogen and phosphorus nutrients.Relative elevation, slope gradient and relative flow length was used to construct the Lorenz curves of different source and sink landscape types in the catchment, in order to assess the source and sink landscape spatial characteristics. By calculating the location-weighted landscape indices of each subcatchment and total catchment, the landscape spatial load characteristics affecting the NPS pollution was identified, with a further Pearson correlation analysis for location-weighted landscape indices and nitrogen-phosphorus monitoring indicators. The analysis of Lorenz curve has revealed that the obtained distribution trend of Lorenz curve and curve area quantified well the spatial characteristics of source and sink landscape pattern related to the relative elevation, slope gradient and relative flow length in small catchment. Results of Pearson correction analysis indicated that location-weighted landscape index(LWLI) combining of terrain and landscape type factor did better in reflecting the status of nitrogen and phosphorus loss than the indices related to relative elevation, slope gradient and relative flow length.展开更多
The periodicity of a river expressed in cycles of various lengths(monthly, seasonal,multiannual) is a result of climatic factors and overlapping environmental conditions within its catchment. In uncontrolled or poorly...The periodicity of a river expressed in cycles of various lengths(monthly, seasonal,multiannual) is a result of climatic factors and overlapping environmental conditions within its catchment. In uncontrolled or poorly surveyed catchments, it is very difficult to determine the duration of a stream’s hydrological activity. This is especially relevant for catchments with complicated water circulation in karstic rocks. The present study concerns the small catchment of the Str??yski Potok river located in the area of the Tatra National Park, in the Western Tatras. The observation period covered the 2015 hydrological year, which differed hydrologically from average conditions. This study aims to develop a simple method to explain the processes shaping the mountain stream discharge periodicity. The research employed periodic field observations linked with climatic and non-climatic factors. Environmental conditions were assessed as four classes reflecting their influence on appearance or disappearance of mountain stream water. Class boundaries were the values of quartiles. The degree of correspondence between environmental factors and stream field observations was described via the Index DC(Degree Correspondence Index) approach.Complete correspondence(Index DC =0) was found in 23% catchments, a weak relationship between conditions favouring discharge and actual condition(Index DC=-1, +1) was noted within 11 catchments,while in 9 catchments, no such relationship was found(Index DC =-2, +2). The obtained results indicate a correspondence or lack thereof between the environmental potential of the catchment and its discharge periodicity. The discrepancies between the assessment of the influence of climatic and nonclimatic factors and the data collected during field observations provide a basis for more detailed studies.Continuation of these studies based on the proposed classifications will allow for a more complete explanation of water disappearance in river channels and the determination of their short-and long-term discharge periodicity.展开更多
Construction of the sponge city by small catchment is going to be the fundamental approach to contiguously promote the development of sponge city during the next phase in China.An effective guiding scheme to guarantee...Construction of the sponge city by small catchment is going to be the fundamental approach to contiguously promote the development of sponge city during the next phase in China.An effective guiding scheme to guarantee the contiguous promotion of sponge city is the systematic scheme of sponge city.An area in Shenzhen is taken as an example,and the compiling method and challenges of systematic scheme of sponge city are explored,principally including the targets setting under small catchment,the structure of overall thinking,compiling the scheme of runoff emission reduction from the source,perfecting aquatic environment,promoting water safety by the orientation of objective and issue,as well as the integration of each scheme and arrangement of construction mission.展开更多
The digital elevation model(DEM)is a type of model that has been widely used in terrain analysis and hydrological modeling.DEM resolution influences the hydrological and geomorphologic features of delineated catchment...The digital elevation model(DEM)is a type of model that has been widely used in terrain analysis and hydrological modeling.DEM resolution influences the hydrological and geomorphologic features of delineated catchments and consequently affects hydrological simulations.This study investigated the impacts of DEM resolution on the performance of the XAJ-GIUH hydrological model,a model coupling the widely used Xinanjiang(XAJ)hydrological model with the geomorphologic instantaneous unit hydrograph(GIUH),in flood simulations in small and medium-sized catchments.To test the model performance,the model parameters were calibrated at a fine DEM resolution(30 m)and then directly transferred to the simulation runs using coarser DEMs.Afterwards,model recalibration was conducted at coarser DEM resolutions.In the simulation runs with the model parameters calibrated at the 30-m resolution,the DEM resolution slightly affected the overall shape of the simulated flood hydrographs but presented a greater impact on the simulated peak discharges in the two study catchments.The XAJ-GIUH model consistently underestimated the peak discharges when the DEM resolution became coarser.The qualified ratio of peak simulations decreased by 35%when the DEM resolution changed from 30 m to 600 m.However,model recalibration produced comparable model per-formances when DEMs with different resolutions were used.This study showed that the impact of DEM resolution on model performance can be mitigated by model recalibration to some extent,if the DEM resolution is not too coarse.展开更多
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the prof...According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.展开更多
文摘The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.
基金funded by the National Natural Science Foundation of China (Grant No.41671291)
文摘The source and sink landscape patterns refer to landscape types or units that can either promote positive evolvement of non-point source(NPS) pollution process, or can prevent/defer the ecological process, respectively. Therefore, the role of a catchment landscape pattern in nutrient losses can be identified based on the spatial arrangement of source and sink landscapes. To reveal the relations between landscape spatial characteristics and NPS pollution in small catchment, a case study was carried out in a Wangjiagou small catchment of the Three Gorges Reservoir Region(TGRR), China. Google earth imagery for 2015 were processed and used to differentiate source and sink landscape types, and six subcatchments were selected as sample regions for monitoring nitrogen and phosphorus nutrients.Relative elevation, slope gradient and relative flow length was used to construct the Lorenz curves of different source and sink landscape types in the catchment, in order to assess the source and sink landscape spatial characteristics. By calculating the location-weighted landscape indices of each subcatchment and total catchment, the landscape spatial load characteristics affecting the NPS pollution was identified, with a further Pearson correlation analysis for location-weighted landscape indices and nitrogen-phosphorus monitoring indicators. The analysis of Lorenz curve has revealed that the obtained distribution trend of Lorenz curve and curve area quantified well the spatial characteristics of source and sink landscape pattern related to the relative elevation, slope gradient and relative flow length in small catchment. Results of Pearson correction analysis indicated that location-weighted landscape index(LWLI) combining of terrain and landscape type factor did better in reflecting the status of nitrogen and phosphorus loss than the indices related to relative elevation, slope gradient and relative flow length.
文摘The periodicity of a river expressed in cycles of various lengths(monthly, seasonal,multiannual) is a result of climatic factors and overlapping environmental conditions within its catchment. In uncontrolled or poorly surveyed catchments, it is very difficult to determine the duration of a stream’s hydrological activity. This is especially relevant for catchments with complicated water circulation in karstic rocks. The present study concerns the small catchment of the Str??yski Potok river located in the area of the Tatra National Park, in the Western Tatras. The observation period covered the 2015 hydrological year, which differed hydrologically from average conditions. This study aims to develop a simple method to explain the processes shaping the mountain stream discharge periodicity. The research employed periodic field observations linked with climatic and non-climatic factors. Environmental conditions were assessed as four classes reflecting their influence on appearance or disappearance of mountain stream water. Class boundaries were the values of quartiles. The degree of correspondence between environmental factors and stream field observations was described via the Index DC(Degree Correspondence Index) approach.Complete correspondence(Index DC =0) was found in 23% catchments, a weak relationship between conditions favouring discharge and actual condition(Index DC=-1, +1) was noted within 11 catchments,while in 9 catchments, no such relationship was found(Index DC =-2, +2). The obtained results indicate a correspondence or lack thereof between the environmental potential of the catchment and its discharge periodicity. The discrepancies between the assessment of the influence of climatic and nonclimatic factors and the data collected during field observations provide a basis for more detailed studies.Continuation of these studies based on the proposed classifications will allow for a more complete explanation of water disappearance in river channels and the determination of their short-and long-term discharge periodicity.
文摘Construction of the sponge city by small catchment is going to be the fundamental approach to contiguously promote the development of sponge city during the next phase in China.An effective guiding scheme to guarantee the contiguous promotion of sponge city is the systematic scheme of sponge city.An area in Shenzhen is taken as an example,and the compiling method and challenges of systematic scheme of sponge city are explored,principally including the targets setting under small catchment,the structure of overall thinking,compiling the scheme of runoff emission reduction from the source,perfecting aquatic environment,promoting water safety by the orientation of objective and issue,as well as the integration of each scheme and arrangement of construction mission.
基金supported by the National Natural Science Foundation of China(Grants No.51979070 and 52079035)the National Key Research and Development Program of China(Grant No.2018YFC1508103)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180022)the Six Talent Peaks Project in Jiangsu Province(Grant No.NY-004).
文摘The digital elevation model(DEM)is a type of model that has been widely used in terrain analysis and hydrological modeling.DEM resolution influences the hydrological and geomorphologic features of delineated catchments and consequently affects hydrological simulations.This study investigated the impacts of DEM resolution on the performance of the XAJ-GIUH hydrological model,a model coupling the widely used Xinanjiang(XAJ)hydrological model with the geomorphologic instantaneous unit hydrograph(GIUH),in flood simulations in small and medium-sized catchments.To test the model performance,the model parameters were calibrated at a fine DEM resolution(30 m)and then directly transferred to the simulation runs using coarser DEMs.Afterwards,model recalibration was conducted at coarser DEM resolutions.In the simulation runs with the model parameters calibrated at the 30-m resolution,the DEM resolution slightly affected the overall shape of the simulated flood hydrographs but presented a greater impact on the simulated peak discharges in the two study catchments.The XAJ-GIUH model consistently underestimated the peak discharges when the DEM resolution became coarser.The qualified ratio of peak simulations decreased by 35%when the DEM resolution changed from 30 m to 600 m.However,model recalibration produced comparable model per-formances when DEMs with different resolutions were used.This study showed that the impact of DEM resolution on model performance can be mitigated by model recalibration to some extent,if the DEM resolution is not too coarse.
基金Supported by CAS(Grant No.KZCX3-SW 422)NNSF(Grant Nos.90502002,40271015)+1 种基金ISWC(B105101-109)IAEA(12322/RO)
文摘According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.