Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use ...Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%).展开更多
Small crystal zeolites ZSM-5 with sizes of 150-300 nm were synthesized using the colloidal silicate precursors as the silica source created by the acid-catalyzed hydrolysis of tetraethylorthosilicate with tetrapropyla...Small crystal zeolites ZSM-5 with sizes of 150-300 nm were synthesized using the colloidal silicate precursors as the silica source created by the acid-catalyzed hydrolysis of tetraethylorthosilicate with tetrapropylammonium bromide as the structure-directing agent within a short crystallization time of 20-35 h. The precursors and final products were detected by XRD, SEM, ICP and DLS.展开更多
By optimizing the orystallization condition, a procedure for the synthesis of small crystallite zeolite ZSM-5 was developed. Compared with the larger crystallite ZSM-5. the smaller one exhibits higher catalytic perfor...By optimizing the orystallization condition, a procedure for the synthesis of small crystallite zeolite ZSM-5 was developed. Compared with the larger crystallite ZSM-5. the smaller one exhibits higher catalytic performance in aromatization reaction of propane.展开更多
Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZS...Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ...ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ratio, the aluminum source, the feeding addition method, aging, and crystallization were investigated. The structure, morphology and composition of the as-synthesized ZSM-5 zeolite MPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), laser particle size distribution (PSD) measurements, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The SIO2/A1203 ratio of ZSM-5 zeolite MPs was in the range of 20~80. The low seed addition was beneficial to improving the crystallinity and shortening the crystallization time, and the suitable amount of seed was 0.25% (SIO2). The ZSM-5 zeolite MPs synthesized with aluminium nitrate nonahydrate used as the aluminum source exhibited a relatively high crystallinity. An appropriate aging time could eliminate the effect of feeding addition method and effectively adjust particle size. The particle size of ZSM-5 zeolite obtained at an aging time of 20 h was around 2.0 I.tm. Prolonging the aging time appropriately could also shorten the high-temperature crystallization time. The suitable aging time was 24 h, and the relative crystallinity of ZSM-5 zeolite could reach up to 99% after crystallization for 24 h at 180 ℃展开更多
This review discussed the use of nano ZSM‐5 in naphtha catalytic cracking. The impact of nano ZSM‐5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro‐sized ZSM‐5. The appli...This review discussed the use of nano ZSM‐5 in naphtha catalytic cracking. The impact of nano ZSM‐5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro‐sized ZSM‐5. The application of nano ZSM‐5 not only increased the catalyst lifetime, but also gave more stability for light olefins selectivity. The effects of the reaction parameters of temperature and feedstock on the performance of nano ZSM‐5 were investigated, and showed that high temperature and linear alkanes as feedstock improved light olefin selectivity and conversion.展开更多
Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propy...Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.展开更多
Syntheses of ZSM-5 zeolites from R-SiO2-Al2O3-H2O-HF(R = diethylamine and ethylenediamine, respectively) were investigated by using the hydrothermal crystallization. The large single crystals of ZSM-5 containing dieth...Syntheses of ZSM-5 zeolites from R-SiO2-Al2O3-H2O-HF(R = diethylamine and ethylenediamine, respectively) were investigated by using the hydrothermal crystallization. The large single crystals of ZSM-5 containing diethylamine and ethylenediamine were synthesized. The ZSM-5 precursors were characterized by means of X-ray powder diffraction, scanning electron microscopy, thermal analysis and electron microprobe analysis. The analysis result of aluminium distribution shows that the interior aluminium content of large crystals of ZSM-5 zeolites is rather low.展开更多
In order to separate ZSM-5 zeolite powders from solution easily, a series of magnetic ZSM-5 zeolites were prepared by hydrothermal synthesis with the addition of magnetic Fe3O4 panicles during the crystalline process....In order to separate ZSM-5 zeolite powders from solution easily, a series of magnetic ZSM-5 zeolites were prepared by hydrothermal synthesis with the addition of magnetic Fe3O4 panicles during the crystalline process. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared (IR) spectrum, energy dispersive X-ray (EDX), specific surface area, magnetic susceptibility and adsorption capability. It was found that the magnetic ZSM-5 zeolites had good magnetism and the magnetic susceptibility increased with the increasing amount of Fe3O4 panicles. Compared with the pure ZSM-5 zeolite, the adsorption capability of magnetic ZSM-5 zeolites was acceptable. When the magnetic zeolites were used to adsorb Pb^2+ from solution, the magnetic zeolite powder could be conveniently separated with magnetic separation technology.展开更多
Two types of ordered mesoporous ZSM-5 zeolites with different mesopores were synthesized by a two-step method. First, carbonaceous SBA- 15 was produced by in situ carbonization of SBA- 15/P 123 composite. Then the obt...Two types of ordered mesoporous ZSM-5 zeolites with different mesopores were synthesized by a two-step method. First, carbonaceous SBA- 15 was produced by in situ carbonization of SBA- 15/P 123 composite. Then the obtained SBA- 15/C composite was transformed into crystallized mesoporous ZSM-5 by impregnation TPAOH followed by steam-assisted crystallization. The final calcined samples synthesized with typical SBA-15/P 123 precursor showed a wormlike morphology with the mean mesopore size of 4.6 nm, while samples synthesized with the addition of trimethylbenzene as swelling agent in the precursor exhibited the morphology of microsphere with the mesopore size of about 9.5 nm. Both two types of mesoporous ZSM-5 zeolites exhibited large surface area and mesopore structure. The steam-assisted crystallization (SAC) was performed with lower consumption of solvents. This two-step method may also be suitable for synthesizing other ordered mesoporous zeolites used as catalysts in some catatytic processes.展开更多
Cytochrome P450(CYP)enzymes function to catalyze a wide range of reactions,many of which are critically important for drug response.Members of the human cytochrome P4503A(CYP3A)family are particularly important in dru...Cytochrome P450(CYP)enzymes function to catalyze a wide range of reactions,many of which are critically important for drug response.Members of the human cytochrome P4503A(CYP3A)family are particularly important in drug clearance,and they collectively metabolize more than half of all currently prescribed medications.The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways.Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression.Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition,metabolism,modulation by small molecules,and biological consequence,highlighting some of those with clinical significance.We also present structural perspectives to further characterize the basis of these comparisons.展开更多
基金National Natural Science Foundation of China(U19B2003,21706177,21975174)Foundation Supported by China Petroleum&Chemical Corporation(121014-2)。
文摘Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%).
基金Supported by the National Natural Science Foundation of China (Grant No. 20776069)Key Natural Science Foundation for Universities of Jiangsu Province (Grant No. 06KJA53012)Program for Changjiang Scholars and Innovative Research Team in University (Grant No. PCSIRT 0732)
文摘Small crystal zeolites ZSM-5 with sizes of 150-300 nm were synthesized using the colloidal silicate precursors as the silica source created by the acid-catalyzed hydrolysis of tetraethylorthosilicate with tetrapropylammonium bromide as the structure-directing agent within a short crystallization time of 20-35 h. The precursors and final products were detected by XRD, SEM, ICP and DLS.
文摘By optimizing the orystallization condition, a procedure for the synthesis of small crystallite zeolite ZSM-5 was developed. Compared with the larger crystallite ZSM-5. the smaller one exhibits higher catalytic performance in aromatization reaction of propane.
基金the Science and Technology Foundation Platform Construction Project of Shanxi Province(No.2015091009)the National Science Foundation for Young Scientists of China(No.21606160)+1 种基金the Qualified Personnel Foundation of Taiyuan University of Technology(No.tyut-rc201454a)School Fund of Taiyuan University of Technology(Nos.1205-04020202 and 1205-04020102)
文摘Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Financial support from the Innovation Fund for Elitists of Henan Province,China(No.0221001200)the Talent Training Joint Fund of NSFC-Henan(No.U1204203)the China Postdoctoral Science Foundation(No.2012M511121)
文摘ZSM-5 zeolite microparticles (MPs) were synthesized under hydrothermal condition using a low crystal seed addition approach without template. The synthesis parameters such as the seed addition amount, the SiOJA1203 ratio, the aluminum source, the feeding addition method, aging, and crystallization were investigated. The structure, morphology and composition of the as-synthesized ZSM-5 zeolite MPs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), laser particle size distribution (PSD) measurements, and inductively coupled plasma-atomic emission spectrometry (ICP-AES). The SIO2/A1203 ratio of ZSM-5 zeolite MPs was in the range of 20~80. The low seed addition was beneficial to improving the crystallinity and shortening the crystallization time, and the suitable amount of seed was 0.25% (SIO2). The ZSM-5 zeolite MPs synthesized with aluminium nitrate nonahydrate used as the aluminum source exhibited a relatively high crystallinity. An appropriate aging time could eliminate the effect of feeding addition method and effectively adjust particle size. The particle size of ZSM-5 zeolite obtained at an aging time of 20 h was around 2.0 I.tm. Prolonging the aging time appropriately could also shorten the high-temperature crystallization time. The suitable aging time was 24 h, and the relative crystallinity of ZSM-5 zeolite could reach up to 99% after crystallization for 24 h at 180 ℃
文摘This review discussed the use of nano ZSM‐5 in naphtha catalytic cracking. The impact of nano ZSM‐5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro‐sized ZSM‐5. The application of nano ZSM‐5 not only increased the catalyst lifetime, but also gave more stability for light olefins selectivity. The effects of the reaction parameters of temperature and feedstock on the performance of nano ZSM‐5 were investigated, and showed that high temperature and linear alkanes as feedstock improved light olefin selectivity and conversion.
基金Supported by the Ministry of Science and Technology of China Through the National Basic Research Program (2010CB226905)the National Natural Science Foundation of China for the Youth (20706059)
文摘Using rectorite extrudates from calcined rectorite powder as the starting material, a series of ZSM-5/rectorite composites were prepared via the in-situ crystallization method. The physicochemical properties and propylene boosting performance of the resulting samples were characterized by using X-ray diffraction, scan- ning electronic microscopy/energy dispersive spectrometer, N2 adsorption-desorption, and Fourier transformed in/tared spectroscopy of pyndine adsorption, respectively, and assessed by using Daqing atmospheric residue as Iced- stock. The results showed that the ZSM-5/rectorite composites in which the ZSM-5 phase grows inositu as a 2-3 p,m thick layer on rectorite particles have a trimodal microporous-mesoporous-macroporous structure and thus exhibit outstanding propylene boosting performance. Compared with a commercial ZSM-5 incorporated fluid catalytic cracking catalyst, the ZSM-5/rectorite composite incorporated catalyst increased the yield and selectivity of propylene by 2.44% and 5.35%, respectively.
文摘Syntheses of ZSM-5 zeolites from R-SiO2-Al2O3-H2O-HF(R = diethylamine and ethylenediamine, respectively) were investigated by using the hydrothermal crystallization. The large single crystals of ZSM-5 containing diethylamine and ethylenediamine were synthesized. The ZSM-5 precursors were characterized by means of X-ray powder diffraction, scanning electron microscopy, thermal analysis and electron microprobe analysis. The analysis result of aluminium distribution shows that the interior aluminium content of large crystals of ZSM-5 zeolites is rather low.
基金Supported by National Natural Science Foundation of China(No.20476021)Natural Science Foundation of Hebei Province(No.B2010000042)+1 种基金Tianjin Natural Science Foundation(No.10JCYBJC04300)Program for Changjiang Scholars and Innovative Research Teamin University(IRT1059)
文摘In order to separate ZSM-5 zeolite powders from solution easily, a series of magnetic ZSM-5 zeolites were prepared by hydrothermal synthesis with the addition of magnetic Fe3O4 panicles during the crystalline process. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared (IR) spectrum, energy dispersive X-ray (EDX), specific surface area, magnetic susceptibility and adsorption capability. It was found that the magnetic ZSM-5 zeolites had good magnetism and the magnetic susceptibility increased with the increasing amount of Fe3O4 panicles. Compared with the pure ZSM-5 zeolite, the adsorption capability of magnetic ZSM-5 zeolites was acceptable. When the magnetic zeolites were used to adsorb Pb^2+ from solution, the magnetic zeolite powder could be conveniently separated with magnetic separation technology.
基金supported by Guizhou Science and Technology Plan Project (LH[2016]7269)the Technical Talent Support Program of Guizhou Education Department (KY[2017]093)+1 种基金Guizhou Provincial Ordinary College Innovation Team ([2014]46)the Doctor Fund Project of Anshun University (Asxybsjj201511)
文摘Two types of ordered mesoporous ZSM-5 zeolites with different mesopores were synthesized by a two-step method. First, carbonaceous SBA- 15 was produced by in situ carbonization of SBA- 15/P 123 composite. Then the obtained SBA- 15/C composite was transformed into crystallized mesoporous ZSM-5 by impregnation TPAOH followed by steam-assisted crystallization. The final calcined samples synthesized with typical SBA-15/P 123 precursor showed a wormlike morphology with the mean mesopore size of 4.6 nm, while samples synthesized with the addition of trimethylbenzene as swelling agent in the precursor exhibited the morphology of microsphere with the mesopore size of about 9.5 nm. Both two types of mesoporous ZSM-5 zeolites exhibited large surface area and mesopore structure. The steam-assisted crystallization (SAC) was performed with lower consumption of solvents. This two-step method may also be suitable for synthesizing other ordered mesoporous zeolites used as catalysts in some catatytic processes.
基金support of The National Basic Research Program of China(2013CB933201)West Light Foundation of The Chinese Academy of Sciences,Science and Technology Program of Gansu Province(1204GKCA063)+1 种基金Science and Technology Program of Lanzhou City(2012-2-103)Key Laboratory of Oil&Gas Fine Chemicals,Ministry of Education&Xinjiang Uyghur Autonomous Region,Xinjiang University(XJDX0908-2011-03)is gratefully acknowledged
基金supported,in part,by ALSAC and by the National Institutes of Health grants R35-GM118041 and P30-CA21765.
文摘Cytochrome P450(CYP)enzymes function to catalyze a wide range of reactions,many of which are critically important for drug response.Members of the human cytochrome P4503A(CYP3A)family are particularly important in drug clearance,and they collectively metabolize more than half of all currently prescribed medications.The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways.Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression.Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition,metabolism,modulation by small molecules,and biological consequence,highlighting some of those with clinical significance.We also present structural perspectives to further characterize the basis of these comparisons.