Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock ...Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 ug/L Cd2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 ug/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 ug/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.展开更多
Both α crystallin from bovine eye lens and Hsp16.3 from Mycobacterium tuberculosis are members of the small heat shock protein family. They were preincubated at 100 ℃ for 15 min and then cooled on ice immedi...Both α crystallin from bovine eye lens and Hsp16.3 from Mycobacterium tuberculosis are members of the small heat shock protein family. They were preincubated at 100 ℃ for 15 min and then cooled on ice immediately. The chaperone like activities of preheated proteins were measured at 37 ℃ using DTT treated insulin B chains as substrates. Both preheated proteins exhibited greatly enhanced chaperone like activities, accompanied with almost unchanged secondary structures and surface hydrophobicity but with a minor change in tertiary structures. The dramatically enhanced chaperone like activities of preheated α crystallin and Hsp16.3 may have resulted from the irreversible change in the tertiary structure as detected by near UV CD spectra.展开更多
A cDNA Library was constructed with the heat shocked tomato ( Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were clon...A cDNA Library was constructed with the heat shocked tomato ( Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were cloned by using RT-PCR. The complete cDNAs of mitochondrial and endoplasmic reticulum small heat shock protein ( shsp) were selected out from the cDNA library. Furthermore, the temperature responses of these shsp genes were determined. Northern hybridization showed that the heat response temperatures of both genes in tomato flower were lower than that in leaf and that mitochondria shsp in leaf was cold-inducible. In this paper, the molecular features of the cloned genes, the causes of the uncommon heat response temperatures of sHSP in newer and the cold inducible character of mitochondria shsp gene in leaf were discussed.展开更多
supported by grants from the National Natural Science Foundation of China (30671178);the Shanxi Province Science Foundation for Youths, China (2014021029-2)
Artemia embryos can endure extreme temperature, long-term anoxia, desiccation and other wide variety of stressful conditions. How the embryos survive these stresses is a very interesting and unsolved subject. To solve...Artemia embryos can endure extreme temperature, long-term anoxia, desiccation and other wide variety of stressful conditions. How the embryos survive these stresses is a very interesting and unsolved subject. To solve this question we analyzed the nucleotide and deduced protein sequence for Hsp26, a molecular chaperone specific to Artemia embryo development, cDNAs of Hsp26 were sequenced from eight Artemia species and deduced Hsp26 amino acid sequences were analyzed. Computer-assisted analysis indicated that the 5'-untranslated region and all the 3 introns contain many putative cis-acting elements for Hsp26 gene expression during development, including heat shock elements (HSEs), Dfd, dl, CF2-II, Hb and AP-1 binding sites. Secondary structure of the Hsp26 3'-untranslated terminator contains the basic structure basis for transcriptional termination. Hsp26 shares sequence similarity with sHSPs (small heat shock protein) from other organisms. The physico-chemical properties of the deduced protein, such as theoretical molecular weight, protein extinction coefficient, isoelectric point and antigenic sites were also obtained. One seven-peptide nuclear localization signals (NLS) "PFRRRMM" was found, which suggested that the Hsp26 protein was hypothesized to be located inside the nucleus. The numbers of phosphorylation sites of serine, threonine and tyrosine and kinase specific phosphorylation sites are also located in Hsp26 protein sequence. These studies will help us achieve a better understanding of Hsp26 and broad implications for sHSPs function in crustacean embryo development.展开更多
Soybean(Glycine max(L.)Merr.)is an important cultivated crop,which requires much water during its growth,and drought seriously affects soybean yields.Studies have shown that the expression of small heat shock proteins...Soybean(Glycine max(L.)Merr.)is an important cultivated crop,which requires much water during its growth,and drought seriously affects soybean yields.Studies have shown that the expression of small heat shock proteins can enhance drought resistance,cold resistance and salt resistance of plants.In this experiment,soybean GmHsps_p23-like gene was successfully cloned by RT-PCR,the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis,and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed.Agrobacterium-mediated method was used to transform soybeans to obtain positive plants.RT-PCR detection,rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization.The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased.After rehydration,the transgenic overexpression plants returned to normal growth,and the damage to the plants was low.After drought stress,the SOD and POD activities and the PRO content of the transgenic overexpression plants increased,while the MDA content decreased.The reverse was true for soybean plants with genetically modified editing vectors.The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group,and had a stronger drought resistance.It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean.The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet.This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene.This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.展开更多
The salinization of irrigated land affects agricultural productivity.HIGH-AFFINITY POTASSIUM(K+)TRANSPORTER 1;5(OsHKT1;5)-dependent sodium(Na+)transport is a key salt tolerance mechanism during rice growth and develop...The salinization of irrigated land affects agricultural productivity.HIGH-AFFINITY POTASSIUM(K+)TRANSPORTER 1;5(OsHKT1;5)-dependent sodium(Na+)transport is a key salt tolerance mechanism during rice growth and development.Using a previously generated high-throughput activation tagging-based T-DNA insertion mutant pool,we isolated a mutant exhibiting salt stress-sensitive phenotype,caused by a reduction in OsHKT1;5transcripts.The salt stress-sensitive phenotype of this mutant results from the loss of function of OsDNAJ15,which encodes plasma membranelocalized heat shock protein 40(Hsp40).osdnaj15loss-of-function mutants show decreased plant height,increased leaf angle,and reduced grain number caused by shorter panicle length and fewer branches.On the other háand,OsDNAJ15-overexpression plants showed salt stress-tolerant phenotypes.Intriguingly,salt stress facilitates the nuclear relocation of OsDNAJ15 so that it can interact with OsBAG4,and OsDNAJ15 and OsBAG4synergistically facilitate the DNA-binding activity of OsMYB106 to positively regulate the expression of OsHKT1;5.Overall,our results reveal a novel function of plasma membrane-localized Hsp40protein in modulating,alongside chaperon regulator OsBAG4,transcriptional regulation under salinity stress tolerance.展开更多
基金Supported by the 100 Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(No.41206105)the Key Deployment Program of Chinese Academy of Sciences(No.KZZD-EW-14-03)
文摘Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 ug/L Cd2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 ug/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 ug/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.
基金Supported by the National Natural Science Foundation of China ( No.3 970 0 0 2 5 ) and the National Science Foundation for Outstanding Young Scientists in China ( No.3 972 5 0 0 8)
文摘Both α crystallin from bovine eye lens and Hsp16.3 from Mycobacterium tuberculosis are members of the small heat shock protein family. They were preincubated at 100 ℃ for 15 min and then cooled on ice immediately. The chaperone like activities of preheated proteins were measured at 37 ℃ using DTT treated insulin B chains as substrates. Both preheated proteins exhibited greatly enhanced chaperone like activities, accompanied with almost unchanged secondary structures and surface hydrophobicity but with a minor change in tertiary structures. The dramatically enhanced chaperone like activities of preheated α crystallin and Hsp16.3 may have resulted from the irreversible change in the tertiary structure as detected by near UV CD spectra.
文摘A cDNA Library was constructed with the heat shocked tomato ( Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were cloned by using RT-PCR. The complete cDNAs of mitochondrial and endoplasmic reticulum small heat shock protein ( shsp) were selected out from the cDNA library. Furthermore, the temperature responses of these shsp genes were determined. Northern hybridization showed that the heat response temperatures of both genes in tomato flower were lower than that in leaf and that mitochondria shsp in leaf was cold-inducible. In this paper, the molecular features of the cloned genes, the causes of the uncommon heat response temperatures of sHSP in newer and the cold inducible character of mitochondria shsp gene in leaf were discussed.
基金supported by grants from the National Natural Science Foundation of China (30671178)the Shanxi Province Science Foundation for Youths, China (2014021029-2)
文摘supported by grants from the National Natural Science Foundation of China (30671178);the Shanxi Province Science Foundation for Youths, China (2014021029-2)
文摘Artemia embryos can endure extreme temperature, long-term anoxia, desiccation and other wide variety of stressful conditions. How the embryos survive these stresses is a very interesting and unsolved subject. To solve this question we analyzed the nucleotide and deduced protein sequence for Hsp26, a molecular chaperone specific to Artemia embryo development, cDNAs of Hsp26 were sequenced from eight Artemia species and deduced Hsp26 amino acid sequences were analyzed. Computer-assisted analysis indicated that the 5'-untranslated region and all the 3 introns contain many putative cis-acting elements for Hsp26 gene expression during development, including heat shock elements (HSEs), Dfd, dl, CF2-II, Hb and AP-1 binding sites. Secondary structure of the Hsp26 3'-untranslated terminator contains the basic structure basis for transcriptional termination. Hsp26 shares sequence similarity with sHSPs (small heat shock protein) from other organisms. The physico-chemical properties of the deduced protein, such as theoretical molecular weight, protein extinction coefficient, isoelectric point and antigenic sites were also obtained. One seven-peptide nuclear localization signals (NLS) "PFRRRMM" was found, which suggested that the Hsp26 protein was hypothesized to be located inside the nucleus. The numbers of phosphorylation sites of serine, threonine and tyrosine and kinase specific phosphorylation sites are also located in Hsp26 protein sequence. These studies will help us achieve a better understanding of Hsp26 and broad implications for sHSPs function in crustacean embryo development.
基金Jilin Province Education Department Science and Technology Research Project[JJKH20210350KJ]Jilin Province Science and Technology Guidance Program Project[20200402023NC]+1 种基金Jilin Provincial Natural Science Foundation Project[20200201027JC]Innovation and Entrepreneurship Training Program for College Students in Jilin Province[2021].
文摘Soybean(Glycine max(L.)Merr.)is an important cultivated crop,which requires much water during its growth,and drought seriously affects soybean yields.Studies have shown that the expression of small heat shock proteins can enhance drought resistance,cold resistance and salt resistance of plants.In this experiment,soybean GmHsps_p23-like gene was successfully cloned by RT-PCR,the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis,and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed.Agrobacterium-mediated method was used to transform soybeans to obtain positive plants.RT-PCR detection,rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization.The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased.After rehydration,the transgenic overexpression plants returned to normal growth,and the damage to the plants was low.After drought stress,the SOD and POD activities and the PRO content of the transgenic overexpression plants increased,while the MDA content decreased.The reverse was true for soybean plants with genetically modified editing vectors.The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group,and had a stronger drought resistance.It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean.The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet.This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene.This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.
基金supported by the National Natural Science Foundation of China (32001448,32272027,and 31971822)China Postdoctoral Science Foundation (2020M670828)Young Elite Scientists Sponsorship Program by Jilin Association for Science and Technology (QT2020011)。
文摘The salinization of irrigated land affects agricultural productivity.HIGH-AFFINITY POTASSIUM(K+)TRANSPORTER 1;5(OsHKT1;5)-dependent sodium(Na+)transport is a key salt tolerance mechanism during rice growth and development.Using a previously generated high-throughput activation tagging-based T-DNA insertion mutant pool,we isolated a mutant exhibiting salt stress-sensitive phenotype,caused by a reduction in OsHKT1;5transcripts.The salt stress-sensitive phenotype of this mutant results from the loss of function of OsDNAJ15,which encodes plasma membranelocalized heat shock protein 40(Hsp40).osdnaj15loss-of-function mutants show decreased plant height,increased leaf angle,and reduced grain number caused by shorter panicle length and fewer branches.On the other háand,OsDNAJ15-overexpression plants showed salt stress-tolerant phenotypes.Intriguingly,salt stress facilitates the nuclear relocation of OsDNAJ15 so that it can interact with OsBAG4,and OsDNAJ15 and OsBAG4synergistically facilitate the DNA-binding activity of OsMYB106 to positively regulate the expression of OsHKT1;5.Overall,our results reveal a novel function of plasma membrane-localized Hsp40protein in modulating,alongside chaperon regulator OsBAG4,transcriptional regulation under salinity stress tolerance.