A stable LDO using VCCS (voltage control current source) is presented. The LDO is designed and implemented on GF 2P4M 0.35μm CMOS technology. Compared with a previous compensation scheme, VCCS can implement a real ...A stable LDO using VCCS (voltage control current source) is presented. The LDO is designed and implemented on GF 2P4M 0.35μm CMOS technology. Compared with a previous compensation scheme, VCCS can implement a real stable LDO with a small on-chip capacitor of 1 pF, whose stability is not affected by the variable ESR (equivalent series resistance) of the output capacitor. The unit gain frequency of the LDO loop can achieve 1.5 MHz, improving the transient response. The PSR of the LDO is larger than 45 dB within 0-40 kHz. The static current of the LDO at heavy load of 100 mA is 57 μA and the dropout voltage of the LDO is 150 mV. Experimental results show that a setting time of 10 ks is achieved, and the variation of output voltage is smaller than 35 mV for a 100 mA load step in transient response of the LDO.展开更多
To miniaturize a very low level dc current amplifier and to improve its output response speed, the switched capacitor negative feedback circuit (SCNF), instead of the conventionally used high-ohmage resistor, is prese...To miniaturize a very low level dc current amplifier and to improve its output response speed, the switched capacitor negative feedback circuit (SCNF), instead of the conventionally used high-ohmage resistor, is presented in this paper. In our system, a switched capacitor filter (SCF) and an offset controller are also used to decrease vibrations and offset voltage at the output of the amplifier using SCNF. The theoretical output voltage of the very low level dc current amplifier using SCNF is obtained. The experimental results show that the unnecessary components of the amplifier’s output are much decreased, and that the response speed of the amplifier with both the SCNF and SCF is faster than that using high-ohmage resistor.展开更多
为研究减小单电感双输出(single-inductor dual-output,SIDO)Buck变换器输出支路间交叉影响的控制方法,该文以工作于电感电流连续导电模式(continue conduction mode,CCM)的SIDO Buck变换器为研究对象,描述其工作原理和开关状态,推导出...为研究减小单电感双输出(single-inductor dual-output,SIDO)Buck变换器输出支路间交叉影响的控制方法,该文以工作于电感电流连续导电模式(continue conduction mode,CCM)的SIDO Buck变换器为研究对象,描述其工作原理和开关状态,推导出状态空间平均模型,并建立了SIDO CCM Buck变换器的功率级小信号模型。在此基础上,提出电容电流–电容电压纹波控制(capacitor current and capacitor voltage ripple controlled,CCVR) SIDO CCM Buck变换器,对其控制原理进行阐述,并建立了小信号模型。进一步地,分析了变换器输出支路间的交叉影响。结果表明:相比传统峰值电流型控制(peak current mode controlled,PCM) SIDO CCM Buck变换器,CCVR SIDO CCM Buck变换器可有效减小输出支路间的交叉影响。最后,由设计的CCVR SIDO CCM Buck变换器实验电路,验证了理论分析的正确性。展开更多
基金supported by State Key Laboratory of ASIC and Systems of Fudan University and NSF(No.61076027)
文摘A stable LDO using VCCS (voltage control current source) is presented. The LDO is designed and implemented on GF 2P4M 0.35μm CMOS technology. Compared with a previous compensation scheme, VCCS can implement a real stable LDO with a small on-chip capacitor of 1 pF, whose stability is not affected by the variable ESR (equivalent series resistance) of the output capacitor. The unit gain frequency of the LDO loop can achieve 1.5 MHz, improving the transient response. The PSR of the LDO is larger than 45 dB within 0-40 kHz. The static current of the LDO at heavy load of 100 mA is 57 μA and the dropout voltage of the LDO is 150 mV. Experimental results show that a setting time of 10 ks is achieved, and the variation of output voltage is smaller than 35 mV for a 100 mA load step in transient response of the LDO.
文摘To miniaturize a very low level dc current amplifier and to improve its output response speed, the switched capacitor negative feedback circuit (SCNF), instead of the conventionally used high-ohmage resistor, is presented in this paper. In our system, a switched capacitor filter (SCF) and an offset controller are also used to decrease vibrations and offset voltage at the output of the amplifier using SCNF. The theoretical output voltage of the very low level dc current amplifier using SCNF is obtained. The experimental results show that the unnecessary components of the amplifier’s output are much decreased, and that the response speed of the amplifier with both the SCNF and SCF is faster than that using high-ohmage resistor.
文摘为研究减小单电感双输出(single-inductor dual-output,SIDO)Buck变换器输出支路间交叉影响的控制方法,该文以工作于电感电流连续导电模式(continue conduction mode,CCM)的SIDO Buck变换器为研究对象,描述其工作原理和开关状态,推导出状态空间平均模型,并建立了SIDO CCM Buck变换器的功率级小信号模型。在此基础上,提出电容电流–电容电压纹波控制(capacitor current and capacitor voltage ripple controlled,CCVR) SIDO CCM Buck变换器,对其控制原理进行阐述,并建立了小信号模型。进一步地,分析了变换器输出支路间的交叉影响。结果表明:相比传统峰值电流型控制(peak current mode controlled,PCM) SIDO CCM Buck变换器,CCVR SIDO CCM Buck变换器可有效减小输出支路间的交叉影响。最后,由设计的CCVR SIDO CCM Buck变换器实验电路,验证了理论分析的正确性。