Multicolor fluorescent probes based on small organic molecules have the advantages of low cost, good biocompatibility, easily modifiable molecular structures and adjustable fluorescence performance. In addition, small...Multicolor fluorescent probes based on small organic molecules have the advantages of low cost, good biocompatibility, easily modifiable molecular structures and adjustable fluorescence performance. In addition, small molecule multicolor fluorescent probes generally undergo multi-site or multi-step reactions, which means that they can be used for the specific detection of structurally similar substances in complex bio-systems. In this review, we focus on the design and application of multicolor fluorescent probes based on small organic molecules: single fluorophores with multiple reaction sites, multiple fluorophores with single reaction sites, or multiple fluorophores with multiple reaction sites. Moreover, a design strategy for multicolor fluorescent probes and its application in biological imaging are also summarized, providing a systematic plan for future research on fluorescent probes functionalized by small organic molecules. It will also play an important role in the development of additional functions for small organic molecule fluorescent probes.展开更多
Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatilit...Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatility of small molecules.Herein,a simple,general,and controllable method is reported to prepare porous carbons by converting small organic molecules into organic molecular salts followed by pyrolysis.The robust electrostatic force holding organic molecular salts together leads to negligible volatility and thus ensures the formation of carbons under high-temperature pyrolysis.Meanwhile,metal moieties in organic molecular salts can be evolved into in-situ templates or activators during pyrolysis to create nanopores.The modular nature of organic molecular salts allows easy control of the porosity and chemical doping of carbons at a molecular level.The sulfur-doped carbon prepared by the ionic solid strategy can serve as robust support to prepare small-sized intermetallic PtCo catalysts,which exhibit a high mass activity of 1.62 A·mgPt^(−1)in catalyzing oxygen reduction reaction for fuel cell applications.展开更多
Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 h...Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.展开更多
An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipo...An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries.展开更多
Hydrazine,an essential chemical,has been used within a wide spectrum of industries,including pesticides,pharmaceuticals and even satellite-launching systems.However,the excessive consumption of hydrazine raised the ri...Hydrazine,an essential chemical,has been used within a wide spectrum of industries,including pesticides,pharmaceuticals and even satellite-launching systems.However,the excessive consumption of hydrazine raised the risk of environmental pollution accidents and occurrence of diseases because of its high toxicity and volatility.This led to the discovery of diverse fluorescent probes for the monitoring of the dangerous substance,including those based on organic small molecules and emerging nanomaterials.Herein,we are going to present a comprehensive review of recently reported hydrazine fluorescent probes,and discuss their structure design strategies and detection mechanisms.In particular,both organic small-molecule and nanomaterial fluorescent probes for hydrazine will be discussed together for the first time.展开更多
Two novel organic small molecule donor materials(FLU),TDPP and(DFLU)_(2)TDPP based on diketopyrrolopyrrole-fluorene were designed and synthesized successfully.The D-D-π-A-π-D-D type molecule(DFLU)_(2)TDPP was constr...Two novel organic small molecule donor materials(FLU),TDPP and(DFLU)_(2)TDPP based on diketopyrrolopyrrole-fluorene were designed and synthesized successfully.The D-D-π-A-π-D-D type molecule(DFLU)_(2)TDPP was constructed based on the D-π-A-π-D type molecule(FLU)_(2)TDPP by a backbone extension strategy.The optical absorption,electrochemistry and photovoltaic properties of the two novel materials were investigated in detail.Both(FLU)_(2)TDPP and(DFLU)_(2)TDPP show narrow energy gaps of1.71 and 1.64 eV,respectively.Compared to(FLU)_(2)TDPP,the photovoltaic device based on(DFLU)_(2)TDPP/PC_(71)BM exhibited a higher power conversion efficiency of 2.27%due to its excellent optical absorption,narrow band gap and balanced carrier mobility.This study indicates that skeleton extension strategy is an effective strategy to broaden the molecular absorption range and improve device performance.展开更多
Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate th...Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.展开更多
Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar ce...Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar cells. Tetraarylpyrrolo[3,2-b]pyrroles are accessible for one-pot synthesis.D42, D43 and D44 possess acceptor-π-donor-π-acceptor structure, on which the aryl bearing substitutes of cyan, fluorine and trifluoromethyl, respectively. Instead, the aryl moiety of D41 is in presence of methyl with a donor-π-donor-π-donor structure. The different substitutes significantly affected their molecular surface charge distribution and thin-film morphology, attributing to the electron-rich properties of fused pyrrole ring. The size of perovskite crystalline growth particles is affected by different molecular structures,and the electron-withdrawing cyan group of D42 is most conducive to the formation of large perovskite grains. The D42 fabricated devices with power conversion efficiency of17.3% and retained 55% of the initial photoelectric conversion efficiency after 22 days in dark condition. The pyrrolo[3,2-b]pyrrole is efficient electron-donating moiety for hole transporting materials to form good substrate in producing perovskite thin film.展开更多
Aiming to reduce the defects of perovskite film and improve carrier transport,an organic small molecule,benzo[d]isothiazol-3(2H)-one 1,1-dioxide(OBS),is introduced as an additive in the solution-processing of perovski...Aiming to reduce the defects of perovskite film and improve carrier transport,an organic small molecule,benzo[d]isothiazol-3(2H)-one 1,1-dioxide(OBS),is introduced as an additive in the solution-processing of perovskite and prepare uniform perovskite films with a continuous distribution of OBS at grain boundaries.Fourier trans-form infrared spectroscopy and X-ray photoelectron spectroscopy are conducted to reveal the interactions of hydrogen bonding and coordina tion bonding between OBS and perovskite.Various characterizations(including X-ray diffraction,UV-vis spectroscopy,electrochemical impedance spectroscopy,etc.)are conducted to uncover the effect of OBS on device performance.Consequently,high efficiency of 23.26%is obtained for the OBS-treated device,while the control device shows only a companion efficiency of 21.60%.展开更多
The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can signific...The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can significantly boost the H_(2) and value-added products production.However,it is currently challenging to achieve a synergistic manipulation of product selectivity and performance for MOR electrocatalyst.Herein,we report NiSnPH@OOH/CC(CC=carbon cloth)perovskite hydroxide nanosphere as an efficient MOR electrocatalyst with high activity,stability,and selectivity towards methanol oxidation to formate.A surface amorphous layer of defect rich NiOOH was generated in operando by selective Sn leaching with stable perovskite hydroxide bulk structure,which mitigates the oxidative power and optimizes the local coordination environment of the active NiOOH sites.In situ Raman combined with electrochemical studies further confirm the key active species,NiOOH,generated in operando enhance the MOR and blocking the over oxidation of methanol to CO_(2).As a result,NiSnPH@OOH/CC effectively masks the OER and attains>99%selectivity with 100%Faradic efficiency for methanol-to-formate.The results of this study show the advances of NiSnPH@OOH/CC as an efficient electrocatalyst for MOR and also suggest its potential applications for various small organic molecules oxidation.展开更多
基金This work was supported by the National Natural Science Foundation of China(21672131,21775096)One Hundred People Plan of Shanxi Province,Shanxi Province“1331 Project”Key Innovation Team Construction Plan Cultivation Team(2018-CT-1)+7 种基金2018 Xiangyuan County Solid Waste Comprehensive Utilization Science and Technology Project(2018XYSDJS-05)Shanxi Province Foundation for Returness(2017-026)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes(2015-10-B3)the Shanxi Province Foundation for Selected(No.2019)the Innovative Talents of Higher Education Institutions of Shanxi,Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0031)the Key R&D Program of Shanxi Province(201903D421069)the Shanxi Province Science Foundation(201901D111015)China Institute for Radiation Production and Scientific Instrument Center of Shanxi University(201512).
文摘Multicolor fluorescent probes based on small organic molecules have the advantages of low cost, good biocompatibility, easily modifiable molecular structures and adjustable fluorescence performance. In addition, small molecule multicolor fluorescent probes generally undergo multi-site or multi-step reactions, which means that they can be used for the specific detection of structurally similar substances in complex bio-systems. In this review, we focus on the design and application of multicolor fluorescent probes based on small organic molecules: single fluorophores with multiple reaction sites, multiple fluorophores with single reaction sites, or multiple fluorophores with multiple reaction sites. Moreover, a design strategy for multicolor fluorescent probes and its application in biological imaging are also summarized, providing a systematic plan for future research on fluorescent probes functionalized by small organic molecules. It will also play an important role in the development of additional functions for small organic molecule fluorescent probes.
基金We acknowledge the funding support from the National Key Research and Development Program of China(No.2018YFA0702001)the National Natural Science Foundation of China(No.22071225)+6 种基金the Fundamental Research Funds for the Central Universities(No.WK2060190103)the Joint Funds from Hefei National Synchrotron Radiation Laboratory(No.KY2060000175)the Natural Science Foundation of Guangdong Province(No.2021A1515012356)the Research Grant for Scientific Platform and Project of Guangdong Provincial Education office(No.2019KTSCX151)Shenzhen Government’s Plan of Science and Technology(No.JCYJ20180305125247308)the Collaborative Innovation Program of Hefei Science Center of CAS(No.2021HSC-CIP015)L.D.F.acknowledges the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus).
文摘Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatility of small molecules.Herein,a simple,general,and controllable method is reported to prepare porous carbons by converting small organic molecules into organic molecular salts followed by pyrolysis.The robust electrostatic force holding organic molecular salts together leads to negligible volatility and thus ensures the formation of carbons under high-temperature pyrolysis.Meanwhile,metal moieties in organic molecular salts can be evolved into in-situ templates or activators during pyrolysis to create nanopores.The modular nature of organic molecular salts allows easy control of the porosity and chemical doping of carbons at a molecular level.The sulfur-doped carbon prepared by the ionic solid strategy can serve as robust support to prepare small-sized intermetallic PtCo catalysts,which exhibit a high mass activity of 1.62 A·mgPt^(−1)in catalyzing oxygen reduction reaction for fuel cell applications.
基金the financial supporting from the NSFC(61975006,61675017)NSFRPSI(Y72Z090Q10)+3 种基金the NSFCQ(cstc2019jcyj-msxm X0400)the NYTPP(R52A199Z11)the YIPACAS(E0296104)the BNSF(4192049)。
文摘Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52072322, 51604250)the Sichuan Science and Technology Program, China (Grant Nos. 2022YFG0294, 2019-GH02-00052-HZ)the Undergraduate Innovation and Entrepreneurship Program (S202210615189)。
文摘An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries.
基金support from the National Natural Science Foundation of China(21977082 and 22037002)the Natural Science Basic Research Program of Shaanxi(2020JC-38).
文摘Hydrazine,an essential chemical,has been used within a wide spectrum of industries,including pesticides,pharmaceuticals and even satellite-launching systems.However,the excessive consumption of hydrazine raised the risk of environmental pollution accidents and occurrence of diseases because of its high toxicity and volatility.This led to the discovery of diverse fluorescent probes for the monitoring of the dangerous substance,including those based on organic small molecules and emerging nanomaterials.Herein,we are going to present a comprehensive review of recently reported hydrazine fluorescent probes,and discuss their structure design strategies and detection mechanisms.In particular,both organic small-molecule and nanomaterial fluorescent probes for hydrazine will be discussed together for the first time.
基金supported by the National Natural Science Foundation of China(21102013)the Fundamental Research Funds for the Central Universities(DUT16ZD205)
文摘Two novel organic small molecule donor materials(FLU),TDPP and(DFLU)_(2)TDPP based on diketopyrrolopyrrole-fluorene were designed and synthesized successfully.The D-D-π-A-π-D-D type molecule(DFLU)_(2)TDPP was constructed based on the D-π-A-π-D type molecule(FLU)_(2)TDPP by a backbone extension strategy.The optical absorption,electrochemistry and photovoltaic properties of the two novel materials were investigated in detail.Both(FLU)_(2)TDPP and(DFLU)_(2)TDPP show narrow energy gaps of1.71 and 1.64 eV,respectively.Compared to(FLU)_(2)TDPP,the photovoltaic device based on(DFLU)_(2)TDPP/PC_(71)BM exhibited a higher power conversion efficiency of 2.27%due to its excellent optical absorption,narrow band gap and balanced carrier mobility.This study indicates that skeleton extension strategy is an effective strategy to broaden the molecular absorption range and improve device performance.
基金supported by the Ministry of Science and Technology of China (2014CB643501)the National Natural Science Foundation of China (21325419, 51373181, 91333204, 91633301)
文摘Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.
基金supported by the National Natural Sci-ence Foundation of China(No.21671148)Tianjin Natural Science Foundation(18JCZDJC97000).
文摘Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar cells. Tetraarylpyrrolo[3,2-b]pyrroles are accessible for one-pot synthesis.D42, D43 and D44 possess acceptor-π-donor-π-acceptor structure, on which the aryl bearing substitutes of cyan, fluorine and trifluoromethyl, respectively. Instead, the aryl moiety of D41 is in presence of methyl with a donor-π-donor-π-donor structure. The different substitutes significantly affected their molecular surface charge distribution and thin-film morphology, attributing to the electron-rich properties of fused pyrrole ring. The size of perovskite crystalline growth particles is affected by different molecular structures,and the electron-withdrawing cyan group of D42 is most conducive to the formation of large perovskite grains. The D42 fabricated devices with power conversion efficiency of17.3% and retained 55% of the initial photoelectric conversion efficiency after 22 days in dark condition. The pyrrolo[3,2-b]pyrrole is efficient electron-donating moiety for hole transporting materials to form good substrate in producing perovskite thin film.
文摘Aiming to reduce the defects of perovskite film and improve carrier transport,an organic small molecule,benzo[d]isothiazol-3(2H)-one 1,1-dioxide(OBS),is introduced as an additive in the solution-processing of perovskite and prepare uniform perovskite films with a continuous distribution of OBS at grain boundaries.Fourier trans-form infrared spectroscopy and X-ray photoelectron spectroscopy are conducted to reveal the interactions of hydrogen bonding and coordina tion bonding between OBS and perovskite.Various characterizations(including X-ray diffraction,UV-vis spectroscopy,electrochemical impedance spectroscopy,etc.)are conducted to uncover the effect of OBS on device performance.Consequently,high efficiency of 23.26%is obtained for the OBS-treated device,while the control device shows only a companion efficiency of 21.60%.
基金supported by the Shenzhen Government’s Plan of Science and Technology(Nos.20220804193203001 and GXWD20220811164046002)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010735)+2 种基金Featured Innovation Project of Colleges and Universities of Guangdong Province(No.2021KTSCX365)Innovation Team Project of Guangdong Colleges and Universities(No.2021KCXTD006)the National Natural Science Foundation of China(No.52072247).
文摘The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can significantly boost the H_(2) and value-added products production.However,it is currently challenging to achieve a synergistic manipulation of product selectivity and performance for MOR electrocatalyst.Herein,we report NiSnPH@OOH/CC(CC=carbon cloth)perovskite hydroxide nanosphere as an efficient MOR electrocatalyst with high activity,stability,and selectivity towards methanol oxidation to formate.A surface amorphous layer of defect rich NiOOH was generated in operando by selective Sn leaching with stable perovskite hydroxide bulk structure,which mitigates the oxidative power and optimizes the local coordination environment of the active NiOOH sites.In situ Raman combined with electrochemical studies further confirm the key active species,NiOOH,generated in operando enhance the MOR and blocking the over oxidation of methanol to CO_(2).As a result,NiSnPH@OOH/CC effectively masks the OER and attains>99%selectivity with 100%Faradic efficiency for methanol-to-formate.The results of this study show the advances of NiSnPH@OOH/CC as an efficient electrocatalyst for MOR and also suggest its potential applications for various small organic molecules oxidation.