期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design and Research on Identification of Typical Tea Plant Diseases Using Small Sample Learning
1
作者 Jian Yang 《Journal of Electronic Research and Application》 2024年第5期21-25,共5页
Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.Wit... Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.With the development of artificial intelligence and computer vision,automatic recognition of plant diseases using image features has become feasible.As the support vector machine(SVM)is suitable for high dimension,high noise,and small sample learning,this paper uses the support vector machine learning method to realize the segmentation of disease spots of diseased tea plants.An improved Conditional Deep Convolutional Generation Adversarial Network with Gradient Penalty(C-DCGAN-GP)was used to expand the segmentation of tea plant spots.Finally,the Visual Geometry Group 16(VGG16)deep learning classification network was trained by the expanded tea lesion images to realize tea disease recognition. 展开更多
关键词 small sample learning Tea plant disease VGG16 deep learning
下载PDF
Meshfree-based physics-informed neural networks for the unsteady Oseen equations
2
作者 彭珂依 岳靖 +1 位作者 张文 李剑 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期151-159,共9页
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatio... We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution. 展开更多
关键词 physics-informed neural networks the unsteady Oseen equation convergence small sample learning
下载PDF
A fault diagnosis model based on weighted extension neural network for turbo-generator sets on small samples with noise 被引量:11
3
作者 Tichun WANG Jiayun WANG +1 位作者 Yong WU Xin SHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2757-2769,共13页
In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis model... In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets. 展开更多
关键词 Fault diagnosis samples with noise small samples learning Turbo-generator sets Weighted Extension Neural Network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部