The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscilla...The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscillation phenomenon in wide frequency domain may occur.To address the problem of small signal stability of the VSCHVDC system,a converter control strategy is designed to improve its small signal stability,and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters.Based on the modeling of the VSC-HVDC system,the general architecture of the inner and outer loop control of the VSCHVDC converter is established;and the damping controllers for DC control and AC control are designed in the phase-locked loop and the inner and outer loop control parts respectively;the state-space statemodel of the control system is established to analyze its performance.And the electromagnetic transient simulation model is built on the PSCAD/EMTDC simulation platform to verify the accuracy of the small signal model.The influence of the parameters of each control part on the stability of the system is summarized.The main control parts affecting stability are optimized for the phenomenon of oscillation due to changes in operation mode occurring on the AC side due to faults and other reasons,which effectively eliminates system oscillation and improves system small signal stability,providing a certain reference for engineering design.展开更多
An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEH...An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.展开更多
Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system o...Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.展开更多
The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally c...The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally considered as correlated random variables in uncertainty analysis. In this paper, the C-vine pair copula theory is introduced to describe the complicated dependence of multidimensional wind power injection, and samples obeying this dependence structure are generated. Monte Carlo simulation is performed to analyze the small signal stability of a test system. The probabilistic stability under different correlation models and different operating conditions scenarios is investigated. The results indicate that the probabilistic small signal stability analysis adopting pair copula model is more accurate and stable than other dependence models under different conditions.展开更多
According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed...According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance,展开更多
Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renew...Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated.展开更多
The impacts of large-scale grid-connected wind farm on direct-driven permanent magnet synchronous generator(PMSG)type are discussed on the small signal stability performances of power systems.Firstly,a simplified prac...The impacts of large-scale grid-connected wind farm on direct-driven permanent magnet synchronous generator(PMSG)type are discussed on the small signal stability performances of power systems.Firstly,a simplified practical model of wind farm of PMSG type is derived for analyzing small signal stability.The rotor-fluxoriented control strategy is applied to the modelling of PMSG.Secondly,the framework of small signal stability analysis incorporating wind farm of PMSG type is built.Finally,the different simulation scenarios based on the IEEE 3-generator-9-bus test system as benchmark are designed to conduct the eigenvalue analysis and to assess the impacts of wind farm of PMSG type on power system small signal stability.Some conclusions are drawn with simulation results.展开更多
This paper modeled a doubly fed induction generator (DFIG) - based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collecte...This paper modeled a doubly fed induction generator (DFIG) - based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collected with infinite bus for small signal stability analysis. The control system of HVDC system is considered for the stability analysis. The impact of the VSC control parameters on the network stability is studied. The lineared dynamic model is employed to do small signal stability analysis by the eigenvalue analysis. The locus of the eigenvalue, which is corresponding to the oscillation model is studied. Time domain simulations conducted in Matlab/Simulink are used to validate the small signal stability analysis.展开更多
The continuation power flow method combined with the Jacobi-Davidson method is presented to trace the critical eigenvalues for power system small signal stability analysis. The continuation power flow based on a predi...The continuation power flow method combined with the Jacobi-Davidson method is presented to trace the critical eigenvalues for power system small signal stability analysis. The continuation power flow based on a predictor- corrector technique is applied to evaluate a continuum of steady state power flow solutions as system parameters change;meanwhile, the critical eigenvalues are found by the Jacobi-Davidson method, and thereby the trajectories of the critical eigenvalues, Hopf bifurcation and saddle node bifurcation points can also be found by the proposed method. The numerical simulations are studied in the IEEE 30-bus test system.展开更多
In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal sta...In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal stability performance is investigated under multiple operating conditions.The effect of three categories of key controller parameters on dominant eigenvalues is studied by sensitivity analysis,including:1)active power drooping coefficient;2)reactive power drooping coefficient;3)parameters of outer loop excitation current control.Finally,some constructive suggestions on how to tune controller parameters to improve microgrid’s small signal stability performance are discussed.展开更多
The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interaction...The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMC- HVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system’s parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.展开更多
The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system.It is necessary to investigate the impacts of wind power generation on the ...The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system.It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned.This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects.The concepts of different types of wind turbine generators(WTGs)and the principles of the grid-connected structures of wind power generation systems are first briefly introduced.Then,the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified.Finally,the control strategies on WTGs to enhance power system damping characteristics are presented.展开更多
The modal analysis method is utilized to study the influence of doubly-fed induction generator(DFIG)on electromechanical oscillations.On this basis,the small signal stability region(SSSR)of power systems with DFIG in ...The modal analysis method is utilized to study the influence of doubly-fed induction generator(DFIG)on electromechanical oscillations.On this basis,the small signal stability region(SSSR)of power systems with DFIG in injection space is evaluated and the corresponding relationship between SSSR boundary and electromechanical oscillations is analyzed.The effects of the locations of DFIG on SSSR are considered.It is found that the boundary of SSSR consists of several smooth surfaces,which can be approximated with hyper-planes in engineering application.With the integration of DFIG,SSSR becomes smaller,thus indicating the deterioration of the small signal stability of the system.The 11-bus system with four generators is used to illustrate the proposed method.展开更多
This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mod...This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mode,and tracking technology(MTT)is used to avoid frequent alternations of target mode in optimization procedures.An improved planted growth simulation algorithm(IPGSA),which has high search efficiency and quick convergence speed,is proposed to optimize controller parameters coordinately.Based on case study of a large-scale power grid,and by using local and interregional low-frequency oscillation modes as target modes,simulation results verify proposed method in this paper.Furthermore,coordination optimization strategy adapted to multi-operating conditions demonstrates that the proposed approach is robust.展开更多
Given the coplanar waveguide (CPW) effect on A1GaN/GaN high electron mobility transistors at a high frequency, the traditional equivalent circuit model cannot accurately describe the electrical characteristics of th...Given the coplanar waveguide (CPW) effect on A1GaN/GaN high electron mobility transistors at a high frequency, the traditional equivalent circuit model cannot accurately describe the electrical characteristics of the device. The admittance of CPW capacitances is large when the frequency is higher than 40 GHz; its impact on the device cannot be ignored. In this study, a small-signal equivalent circuit model considering CPW capacitance is provided. To verify the model, S-parameters are obtained from the modeling and measurements. A good agreement is observed between the simulation and measurement results, indicating the reliability of the model.展开更多
This paper presents the complete mathematical model and predicts the performance of switched reluctance generator with time average and small signal models. The complete mathematical model is developed in three stages...This paper presents the complete mathematical model and predicts the performance of switched reluctance generator with time average and small signal models. The complete mathematical model is developed in three stages. First, a switching model is developed based on quasi-linear inductance profile. Next, based on the switching behaviour, a time average model is obtained to measure the difference between the excitation and generation time in each switching cycle. Finally, to track control voltage and current wave shapes, a small signal model is designed. The effectiveness of the complete multilevel model combining electrical machine, power converter, load and control with programming language is demonstrated through simulations. A PI controller is used for controlling the voltage of the generator. The results presented show that the controller exhibits accurate tracking control of load voltage under different operating conditions. This demonstrates that the proposed model is able to perform an accurate control of the generated output voltage even in transient situations. The simulation is performed to choose the control parameters and study the performance of switched reluctance generator prior to its actual implementation. Initial experimental results are presented using NI-Data acquisition card to control the output power according to load requirements.展开更多
Intrinsic stability ofthe heterojunction bipolar transistor (HBT) was analyzed and discussed based on a small signal equivalent circuit model. The stability factor of the HBT device was derived based on a compact T-...Intrinsic stability ofthe heterojunction bipolar transistor (HBT) was analyzed and discussed based on a small signal equivalent circuit model. The stability factor of the HBT device was derived based on a compact T-type small signal equivalent circuit model of the HBT. The effect of the mainly small signal model parameters of the HBT on the stability of the HBT was thoroughly examined. The discipline of parameter optimum to improve the intrinsic stability of the HBT was achieved. The theoretic analysis results of the stability were also used to explain the experimental results of the stability of the HBT and they were verified by the experimental results.展开更多
An antiresonant ring (ARR) interferometer configuration is introduced for the characterization of a continuous wave (CW) Nd:YAG laser output. The output of the ARR device is precisely characterized to determine t...An antiresonant ring (ARR) interferometer configuration is introduced for the characterization of a continuous wave (CW) Nd:YAG laser output. The output of the ARR device is precisely characterized to determine the gain and loss of a laboratory CW Nd:YAG laser by using the Findlay-Clay approach. The ARR arm is then experimentally arranged inside the cavity of an arranged high power side-pumped CW Nd:YAG laser. A coated beam splitter with 50–50% re?ectivity at normal incidence is placed inside the cavity to provide a wide range of re?ectivity from 0 to 100%. This is performed by a rotatable stage and tilting the beam splitter by 10? with the steps of 0.05. By changing the input electrical power of the laser pump the variation of the output laser power is monitored for 20 individual re?ectivity of ARR arm. Average pump threshold power of about 180 W is obtained. With the help of the derived equations and obtained threshold power, small signal gain and loss associated with the emerging beam is estimated. It is verified that the former is very dependent to the input parameters. Laser efficiency is also measures 5.6% which is quite comparable with the reported values.展开更多
By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge ...By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.展开更多
A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have bee...A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is –30 dB.展开更多
基金supported by Research on the Oscillation Mechanism and Suppression Strategy of Yu-E MMC-HVDC Equipment and System(2021Yudian Technology 33#).
文摘The voltage source converter based high voltage direct current(VSC-HVDC)system is based on voltage source converter,and its control system is more complex.Also affected by the fast control of power electronics,oscillation phenomenon in wide frequency domain may occur.To address the problem of small signal stability of the VSCHVDC system,a converter control strategy is designed to improve its small signal stability,and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters.Based on the modeling of the VSC-HVDC system,the general architecture of the inner and outer loop control of the VSCHVDC converter is established;and the damping controllers for DC control and AC control are designed in the phase-locked loop and the inner and outer loop control parts respectively;the state-space statemodel of the control system is established to analyze its performance.And the electromagnetic transient simulation model is built on the PSCAD/EMTDC simulation platform to verify the accuracy of the small signal model.The influence of the parameters of each control part on the stability of the system is summarized.The main control parts affecting stability are optimized for the phenomenon of oscillation due to changes in operation mode occurring on the AC side due to faults and other reasons,which effectively eliminates system oscillation and improves system small signal stability,providing a certain reference for engineering design.
文摘An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.
基金Project(51007042)supported by the National Natural Science Foundation of China
文摘Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.
基金supported by the National Natural Science Foundation of China(51307107,51477098,51877133)SRFDP(20130073120034)State Grid Corporation of China Science and Technology Project(Hybrid AC/DC Power Grid Planning and Optimization Study Under the Framework of GEI)。
文摘The increasing integration of wind power generation brings more uncertainty into the power system. Since the correlation may have a notable influence on the power system,the output powers of wind farms are generally considered as correlated random variables in uncertainty analysis. In this paper, the C-vine pair copula theory is introduced to describe the complicated dependence of multidimensional wind power injection, and samples obeying this dependence structure are generated. Monte Carlo simulation is performed to analyze the small signal stability of a test system. The probabilistic stability under different correlation models and different operating conditions scenarios is investigated. The results indicate that the probabilistic small signal stability analysis adopting pair copula model is more accurate and stable than other dependence models under different conditions.
文摘According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance,
基金supported by the National Natural Science Foundation of China (NSFC) (No. 51577075)
文摘Recently, with increasing improvements in the penetration of wind power and photovoltaic power in the world, probabilistic small signal stability analysis(PSSSA) of a power system consisting of multiple types of renewable energy has become a key problem. To address this problem, this study proposes a probabilistic collocation method(PCM)-based PSSSA for a power system consisting of wind farms and photovoltaic farms. Compared with the conventional Monte Carlo method, the proposed method meets the accuracy and precision requirements and greatly reduces the computation; therefore, it is suitable for the PSSSA of this power system. Case studies are conducted based on a 4-machine 2-area and New England systems, respectively. The simulation results show that, by reducing synchronous generator output to improve the penetration of renewable energy, the probabilistic small signal stability(PSSS) of the system is enhanced. Conversely, by removing part of the synchronous generators to improve the penetration of renewable energy, the PSSS of the system may be either enhanced or deteriorated.
基金supported by Research Project of Science and Technology from Shenzhen Government of China(No.JC200903180528A)
文摘The impacts of large-scale grid-connected wind farm on direct-driven permanent magnet synchronous generator(PMSG)type are discussed on the small signal stability performances of power systems.Firstly,a simplified practical model of wind farm of PMSG type is derived for analyzing small signal stability.The rotor-fluxoriented control strategy is applied to the modelling of PMSG.Secondly,the framework of small signal stability analysis incorporating wind farm of PMSG type is built.Finally,the different simulation scenarios based on the IEEE 3-generator-9-bus test system as benchmark are designed to conduct the eigenvalue analysis and to assess the impacts of wind farm of PMSG type on power system small signal stability.Some conclusions are drawn with simulation results.
文摘This paper modeled a doubly fed induction generator (DFIG) - based offshore wind farm integrated through a voltage source converter –based high voltage direct current (VSC-HVDC) transmission system, which is collected with infinite bus for small signal stability analysis. The control system of HVDC system is considered for the stability analysis. The impact of the VSC control parameters on the network stability is studied. The lineared dynamic model is employed to do small signal stability analysis by the eigenvalue analysis. The locus of the eigenvalue, which is corresponding to the oscillation model is studied. Time domain simulations conducted in Matlab/Simulink are used to validate the small signal stability analysis.
文摘The continuation power flow method combined with the Jacobi-Davidson method is presented to trace the critical eigenvalues for power system small signal stability analysis. The continuation power flow based on a predictor- corrector technique is applied to evaluate a continuum of steady state power flow solutions as system parameters change;meanwhile, the critical eigenvalues are found by the Jacobi-Davidson method, and thereby the trajectories of the critical eigenvalues, Hopf bifurcation and saddle node bifurcation points can also be found by the proposed method. The numerical simulations are studied in the IEEE 30-bus test system.
基金This work is jointly supported by National High Technology R&D Program of China(No.2011AA050204)the 2014 Endeavour Research Fellowship and 2014 Research Collaborative Award of University of Western Australia,the project of the State Grid(Off-shore wind farm plan in Zhejiang province).
文摘In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal stability performance is investigated under multiple operating conditions.The effect of three categories of key controller parameters on dominant eigenvalues is studied by sensitivity analysis,including:1)active power drooping coefficient;2)reactive power drooping coefficient;3)parameters of outer loop excitation current control.Finally,some constructive suggestions on how to tune controller parameters to improve microgrid’s small signal stability performance are discussed.
文摘The permanent magnet synchronous generator (PMSG)-based wind farm with a modular multilevel converter (MMC) based HVDC system exhibits various oscillations and can experience dynamic instability due to the interactions between different controllers of the wind farm and MMC stations, which have not been properly examined in the existing literatures. This paper presents a dynamic modeling approach for small signal stability analysis of PMSG-based wind farms with a MMC- HVDC system. The small signal model of the study system is validated by the comprehensive electromagnetic transient (EMT) simulations in PSCAD/EMTDC. Then the eigenvalue approach and participation factors analysis are utilized to comprehensively evaluate the impact of different controllers, system’s parameters and the circulating current suppressing controller (CCSC) on the small signal stability of the entire system. From eigenvalue analysis, it is revealed that as the output active power of the wind farm increases within the rated range, the overall system will exhibit a sub-synchronous oscillation (SSO) instability mode, an extremely weak damping mode, and a low frequency oscillation instability mode. From participation factors analysis, it is observed that the SSO mode and weak damping mode are primarily related to the internal dynamics of the MMC, which can be suppressed or improved by CCSC. It is determined that the low frequency oscillation mode is primarily caused by the interactions between the phase locked loop (PLL) control of the wind farm and the voltage and frequency (V-F) control of the MMC station. The analysis also depicts that the larger proportional gain value of the V-F control of the MMC station and smaller PLL bandwidth of the wind farm can enhance the small signal stability of the entire system.
基金This work is supported by a discovery project of Australia Research Council(No.DP120101345)National Key Technology Research and Development Program of China(No.2011BAA07B02).
文摘The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system.It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned.This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects.The concepts of different types of wind turbine generators(WTGs)and the principles of the grid-connected structures of wind power generation systems are first briefly introduced.Then,the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified.Finally,the control strategies on WTGs to enhance power system damping characteristics are presented.
基金This work is supported by National Basic Research Program of China(973 Program)(No.2009CB219701).
文摘The modal analysis method is utilized to study the influence of doubly-fed induction generator(DFIG)on electromechanical oscillations.On this basis,the small signal stability region(SSSR)of power systems with DFIG in injection space is evaluated and the corresponding relationship between SSSR boundary and electromechanical oscillations is analyzed.The effects of the locations of DFIG on SSSR are considered.It is found that the boundary of SSSR consists of several smooth surfaces,which can be approximated with hyper-planes in engineering application.With the integration of DFIG,SSSR becomes smaller,thus indicating the deterioration of the small signal stability of the system.The 11-bus system with four generators is used to illustrate the proposed method.
基金This work was supported by the Shanghai Science and Technology Commission Innovation Action Plan(Grant No.18DZ1203200).
文摘This paper presents an approach for designing parameters of power system stabilizer(PSS)and FACTS damping controllers in a large scale practical power system.The objective is maximizing damping ratio of the target mode,and tracking technology(MTT)is used to avoid frequent alternations of target mode in optimization procedures.An improved planted growth simulation algorithm(IPGSA),which has high search efficiency and quick convergence speed,is proposed to optimize controller parameters coordinately.Based on case study of a large-scale power grid,and by using local and interregional low-frequency oscillation modes as target modes,simulation results verify proposed method in this paper.Furthermore,coordination optimization strategy adapted to multi-operating conditions demonstrates that the proposed approach is robust.
基金Project supported by the National Natural Science Foundation of China(Nos.61376078,61274086)the Fundamental Research Funds for the Central Universities of China(No.ZYGX2012J041)
文摘Given the coplanar waveguide (CPW) effect on A1GaN/GaN high electron mobility transistors at a high frequency, the traditional equivalent circuit model cannot accurately describe the electrical characteristics of the device. The admittance of CPW capacitances is large when the frequency is higher than 40 GHz; its impact on the device cannot be ignored. In this study, a small-signal equivalent circuit model considering CPW capacitance is provided. To verify the model, S-parameters are obtained from the modeling and measurements. A good agreement is observed between the simulation and measurement results, indicating the reliability of the model.
文摘This paper presents the complete mathematical model and predicts the performance of switched reluctance generator with time average and small signal models. The complete mathematical model is developed in three stages. First, a switching model is developed based on quasi-linear inductance profile. Next, based on the switching behaviour, a time average model is obtained to measure the difference between the excitation and generation time in each switching cycle. Finally, to track control voltage and current wave shapes, a small signal model is designed. The effectiveness of the complete multilevel model combining electrical machine, power converter, load and control with programming language is demonstrated through simulations. A PI controller is used for controlling the voltage of the generator. The results presented show that the controller exhibits accurate tracking control of load voltage under different operating conditions. This demonstrates that the proposed model is able to perform an accurate control of the generated output voltage even in transient situations. The simulation is performed to choose the control parameters and study the performance of switched reluctance generator prior to its actual implementation. Initial experimental results are presented using NI-Data acquisition card to control the output power according to load requirements.
文摘Intrinsic stability ofthe heterojunction bipolar transistor (HBT) was analyzed and discussed based on a small signal equivalent circuit model. The stability factor of the HBT device was derived based on a compact T-type small signal equivalent circuit model of the HBT. The effect of the mainly small signal model parameters of the HBT on the stability of the HBT was thoroughly examined. The discipline of parameter optimum to improve the intrinsic stability of the HBT was achieved. The theoretic analysis results of the stability were also used to explain the experimental results of the stability of the HBT and they were verified by the experimental results.
文摘An antiresonant ring (ARR) interferometer configuration is introduced for the characterization of a continuous wave (CW) Nd:YAG laser output. The output of the ARR device is precisely characterized to determine the gain and loss of a laboratory CW Nd:YAG laser by using the Findlay-Clay approach. The ARR arm is then experimentally arranged inside the cavity of an arranged high power side-pumped CW Nd:YAG laser. A coated beam splitter with 50–50% re?ectivity at normal incidence is placed inside the cavity to provide a wide range of re?ectivity from 0 to 100%. This is performed by a rotatable stage and tilting the beam splitter by 10? with the steps of 0.05. By changing the input electrical power of the laser pump the variation of the output laser power is monitored for 20 individual re?ectivity of ARR arm. Average pump threshold power of about 180 W is obtained. With the help of the derived equations and obtained threshold power, small signal gain and loss associated with the emerging beam is estimated. It is verified that the former is very dependent to the input parameters. Laser efficiency is also measures 5.6% which is quite comparable with the reported values.
文摘By using the output inductors and body capacitances without adding any component compared with hard switching synchronous rectifier,the topology of a soft switched synchronous rectifier with phase-shifted full bridge zero voltage switching DC/DC converter is proposed. The converter efficiency is maximized due to soft switching of the full bridge MOSFETs and the synchronous MOSFETs, and also the low conduction loss of synchronous MOSFET. The operation principles of the circuit are analyzed in detail and the small-signal model is derived, also the converter dynamic characteristics are analyzed. Frequency responses of transfer functions under different values of transformer primary leakage inductance are discussed. The experimental results were obtained from a 400 V input and 100 A/12 V output DC/DC converter operating at 100 kHz. The results show that the converter efficiency is 2% higher in rated power than traditional diode rectifier.
基金supported by the National Natural Science Foundation of China(No.61401025)
文摘A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is –30 dB.