The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well ...Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well under conditions of large sample size and complete failure data,which lead to large deviation under conditions of small sample size and zero?failure data. To improve this problem,a new Bayesian method is proposed. Based on the characteristics of the solenoid valve in the braking system of a high?speed train,the modified Weibull distribution is selected to describe the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability at censored time,a concave method is employed to obtain the relationships between accumulation failure prob?abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained from maximum likelihood estimation,and to illustrate that the proposed Bayesian model exhibits a better accuracy for the expectation value when the sample size is less than 12. Finally,the robustness of the model is demonstrated by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system,which shows that the change in the reliability and failure rate among the di erent hyperparameters is small. The method is provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi?tions of small sample size and zero?failure data.展开更多
Traditional classification algorithms perform not very well on imbalanced data sets and small sample size. To deal with the problem, a novel method is proposed to change the class distribution through adding virtual s...Traditional classification algorithms perform not very well on imbalanced data sets and small sample size. To deal with the problem, a novel method is proposed to change the class distribution through adding virtual samples, which are generated by the windowed regression over-sampling (WRO) method. The proposed method WRO not only reflects the additive effects but also reflects the multiplicative effect between samples. A comparative study between the proposed method and other over-sampling methods such as synthetic minority over-sampling technique (SMOTE) and borderline over-sampling (BOS) on UCI datasets and Fourier transform infrared spectroscopy (FTIR) data set is provided. Experimental results show that the WRO method can achieve better performance than other methods.展开更多
It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number o...It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number of labeled samples, which restricts the application of deep learning in an environment with a small sample size. In this paper, we propose an approach based on a generative adversarial network (GAN) combined with a deep neural network (DNN). First, the original samples were divided into a training set and a test set. The GAN was trained with the training set to generate synthetic sample data, which enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the classifier was tested with the test set, and the effectiveness of the approach for multi-classification with a small sample size was validated by the indicators. As an empirical case, the approach was then applied to identify the stages of cancers with a small labeled sample size. The experimental results verified that the proposed approach achieved a greater accuracy than traditional methods. This research was an attempt to transform the classical statistical machine-learning classification method based on original samples into a deep-learning classification method based on data augmentation. The use of this approach will contribute to an expansion of application scenarios for the new generation of artificial intelligence based on deep learning, and to an increase in application effectiveness. This research is also expected to contribute to the comprehensive promotion of new-generation artificial intelligence.展开更多
Accurate prediction of the internal corrosion rates of oil and gas pipelines could be an effective way to prevent pipeline leaks.In this study,a proposed framework for predicting corrosion rates under a small sample o...Accurate prediction of the internal corrosion rates of oil and gas pipelines could be an effective way to prevent pipeline leaks.In this study,a proposed framework for predicting corrosion rates under a small sample of metal corrosion data in the laboratory was developed to provide a new perspective on how to solve the problem of pipeline corrosion under the condition of insufficient real samples.This approach employed the bagging algorithm to construct a strong learner by integrating several KNN learners.A total of 99 data were collected and split into training and test set with a 9:1 ratio.The training set was used to obtain the best hyperparameters by 10-fold cross-validation and grid search,and the test set was used to determine the performance of the model.The results showed that theMean Absolute Error(MAE)of this framework is 28.06%of the traditional model and outperforms other ensemblemethods.Therefore,the proposed framework is suitable formetal corrosion prediction under small sample conditions.展开更多
构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替...构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。展开更多
目的当竞争风险存在时,基于限制平均损失时间(restricted mean time lost,RMTL)的方法具有较少的模型假设条件和更直观的解释性。组间效应量为RMTL差值(RMTL difference,RMTLd),对应假设检验基于大样本下构建,而在小样本假设下的表现效...目的当竞争风险存在时,基于限制平均损失时间(restricted mean time lost,RMTL)的方法具有较少的模型假设条件和更直观的解释性。组间效应量为RMTL差值(RMTL difference,RMTLd),对应假设检验基于大样本下构建,而在小样本假设下的表现效果未知。方法本文探讨RMTLd在小样本下的表现,并发展了几种RMTL的变量转换法以提高此时的统计性能,且通过Monte Carlo模拟评价它们在不同情形下的Ⅰ类错误和检验效能。结果在小样本下,RMTLd检验原方法存在Ⅰ类错误膨胀的现象,而四种转换法之一的逻辑转换法能够保持较好的统计性能。结论在分析小样本竞争风险数据时,推荐使用RMTL的逻辑转换进行统计分析。展开更多
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
基金Supported by National Natural Science Foundation of China(Grant No.51175028)Great Scholars Training Project(Grant No.CIT&TCD20150312)Beijing Recognized Talent Project(Grant No.2014018)
文摘Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well under conditions of large sample size and complete failure data,which lead to large deviation under conditions of small sample size and zero?failure data. To improve this problem,a new Bayesian method is proposed. Based on the characteristics of the solenoid valve in the braking system of a high?speed train,the modified Weibull distribution is selected to describe the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability at censored time,a concave method is employed to obtain the relationships between accumulation failure prob?abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained from maximum likelihood estimation,and to illustrate that the proposed Bayesian model exhibits a better accuracy for the expectation value when the sample size is less than 12. Finally,the robustness of the model is demonstrated by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system,which shows that the change in the reliability and failure rate among the di erent hyperparameters is small. The method is provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi?tions of small sample size and zero?failure data.
文摘Traditional classification algorithms perform not very well on imbalanced data sets and small sample size. To deal with the problem, a novel method is proposed to change the class distribution through adding virtual samples, which are generated by the windowed regression over-sampling (WRO) method. The proposed method WRO not only reflects the additive effects but also reflects the multiplicative effect between samples. A comparative study between the proposed method and other over-sampling methods such as synthetic minority over-sampling technique (SMOTE) and borderline over-sampling (BOS) on UCI datasets and Fourier transform infrared spectroscopy (FTIR) data set is provided. Experimental results show that the WRO method can achieve better performance than other methods.
基金the National Natural Science Foundation of China (91646102, L1724034, L16240452, L1524015, and 20905027)the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (16JDGC011)+3 种基金the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences and Technology Project (CKCEST-2018-1-13)the UK– China Industry Academia Partnership Programme (UK-CIAPP/260)Volvo-Supported Green Economy and Sustainable Development at Tsinghua University (20153000181)the Tsinghua Initiative Research Project (2016THZW).
文摘It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number of labeled samples, which restricts the application of deep learning in an environment with a small sample size. In this paper, we propose an approach based on a generative adversarial network (GAN) combined with a deep neural network (DNN). First, the original samples were divided into a training set and a test set. The GAN was trained with the training set to generate synthetic sample data, which enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the classifier was tested with the test set, and the effectiveness of the approach for multi-classification with a small sample size was validated by the indicators. As an empirical case, the approach was then applied to identify the stages of cancers with a small labeled sample size. The experimental results verified that the proposed approach achieved a greater accuracy than traditional methods. This research was an attempt to transform the classical statistical machine-learning classification method based on original samples into a deep-learning classification method based on data augmentation. The use of this approach will contribute to an expansion of application scenarios for the new generation of artificial intelligence based on deep learning, and to an increase in application effectiveness. This research is also expected to contribute to the comprehensive promotion of new-generation artificial intelligence.
基金supported by the National Natural Science Foundation of China(Grant No.52174062).
文摘Accurate prediction of the internal corrosion rates of oil and gas pipelines could be an effective way to prevent pipeline leaks.In this study,a proposed framework for predicting corrosion rates under a small sample of metal corrosion data in the laboratory was developed to provide a new perspective on how to solve the problem of pipeline corrosion under the condition of insufficient real samples.This approach employed the bagging algorithm to construct a strong learner by integrating several KNN learners.A total of 99 data were collected and split into training and test set with a 9:1 ratio.The training set was used to obtain the best hyperparameters by 10-fold cross-validation and grid search,and the test set was used to determine the performance of the model.The results showed that theMean Absolute Error(MAE)of this framework is 28.06%of the traditional model and outperforms other ensemblemethods.Therefore,the proposed framework is suitable formetal corrosion prediction under small sample conditions.
文摘构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。
文摘目的当竞争风险存在时,基于限制平均损失时间(restricted mean time lost,RMTL)的方法具有较少的模型假设条件和更直观的解释性。组间效应量为RMTL差值(RMTL difference,RMTLd),对应假设检验基于大样本下构建,而在小样本假设下的表现效果未知。方法本文探讨RMTLd在小样本下的表现,并发展了几种RMTL的变量转换法以提高此时的统计性能,且通过Monte Carlo模拟评价它们在不同情形下的Ⅰ类错误和检验效能。结果在小样本下,RMTLd检验原方法存在Ⅰ类错误膨胀的现象,而四种转换法之一的逻辑转换法能够保持较好的统计性能。结论在分析小样本竞争风险数据时,推荐使用RMTL的逻辑转换进行统计分析。