期刊文献+
共找到15,547篇文章
< 1 2 250 >
每页显示 20 50 100
Time-resolved ultra-small-angle X-ray scattering beamline(BL10U1)at SSRF
1
作者 Wen-Qiang Hua Chun-Ming Yang +12 位作者 Ping Zhou Feng Tian Jin-You Lin Yu-Zhu Wang Xiao-Yun Li Xia-Ran Miao Chun-Xia Hong Qiu-Shi Huang Xin-Tong Zhao Yong-Feng Men Jie Wang Xing-Yu Gao Xiu-Hong Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期6-19,共14页
The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X... The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results. 展开更多
关键词 Synchrotron radiation Ultra-small-angle X-ray scattering Micro small-angle X-ray scattering USAXS Time resolved μSAXS
下载PDF
A progressive framework for rotary motion deblurring
2
作者 Jinhui Qin Yong Ma +2 位作者 Jun Huang Fan Fan You Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期159-172,共14页
The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for l... The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring. 展开更多
关键词 rotary motion deblurring Progressive framework Blur extents factor TDM-CNN
下载PDF
Reduced-Order Observer-Based LQR Controller Design for Rotary Inverted Pendulum
3
作者 Guogang Gao LeiXu +2 位作者 Tianpeng Huang Xuliang Zhao Lihua Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期305-323,共19页
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des... The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme. 展开更多
关键词 rotary inverted pendulum(RIP) linear quadratic regulator(LQR) reduced-order observer states estimate
下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
4
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
Impact Damage Testing Study of Shanxi-Beijing Natural Gas Pipeline Based on Decision Tree Rotary Tiller Operation
5
作者 Liqiong Chen Kai Zhang +4 位作者 Song Yang Duo Xu Weihe Huang Hongxuan Hu Haonan Liu 《Structural Durability & Health Monitoring》 EI 2024年第5期683-706,共24页
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the... The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region. 展开更多
关键词 Natural gas pipeline rotary tiller operation third-party damage finite element simulation decision tree model safety management
下载PDF
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
6
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 Large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
下载PDF
BL19U2:Small-angle X-ray scattering beamline for biological macromolecules in solution at SSRF 被引量:5
7
作者 Yi-Wen Li Guang-Feng Liu +4 位作者 Hong-Jin Wu Ping Zhou Chun-Xia Hong Na Li Feng-Gang Bian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2020年第12期32-40,共9页
The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially... The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented. 展开更多
关键词 Shanghai synchrotron radiation facility Biological small-angle X-ray scattering High-throughput screening Biological macromolecules
下载PDF
Small-angle X-ray analysis of the effect of grain size on the thermal damage of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7 tetrazocine-based plastic-bounded expolsives 被引量:2
8
作者 闫冠云 田强 +4 位作者 刘佳辉 陈波 孙光爱 黄明 李秀宏 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期560-564,共5页
The microstmcture evolution of plastic-bonded explosives (PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 ... The microstmcture evolution of plastic-bonded explosives (PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX)- based PBXs with different HMX particle sizes [approximately 40 (FLIP) and 100 μm (LHP)] were measured using small- angle X-ray scattering (SAXS). No obvious pore variations were found in the LHP samples heated at 160 ℃ for 6 h, whereas the amount of pores of FHP decreased when subjected to 160 ℃ for 6 h. At 180 ℃, the average pore radii of FHP and LHP decreased from approximately 45 nm to 25 nm, and the total pore volume increased distinctively because of phase transformation. The LHP sample reached a high level of pore content after being held at 180 ℃ for 1 h, whereas FHP required 3 h. Both FHP and LHP had relatively high pore volumes when subjected to 200 ℃ for 1 and 3 h. 展开更多
关键词 HMX-based plastic-bonded explosives small-angle X-ray scattering pores thermal-treated
下载PDF
Understanding fluorine-free electrolytes via small-angle X-ray scattering 被引量:1
9
作者 Kun Qian Zhou Yu +4 位作者 Yuzi Liu David J.Gosztola Randall E.Winans Lei Cheng Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期340-346,I0009,共8页
Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare t... Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare the solvation phenomenon of sodium tetraphenylborate(NaBPh_(4)) salt dissolved in organic solvents of propylene carbonate(PC), 1,2-dimethoxyethane(DME), acetonitrile(ACN) and tetrahydrofuran(THF). Small-angle X-ray scattering(SAXS) reveals a unique two-peak structural feature in this saltconcentrated PC electrolyte, while solutions using other solvents only have one scattering peak.Molecular dynamics(MD) simulations further reveal that there are anion-based clusters in addition to the short-range charge ordering in the concentrated NaBPh4/PC electrolyte. Raman spectroscopy confirms the existence of considerable contact ion pairs(CIPs). This work emphasizes the importance of global and local structural analysis, which will provide valuable clues for understanding the structureperformance relationship of electrolytes. 展开更多
关键词 Fluorine-free electrolytes Sodium-ion batteries small-angle X-ray scattering Solvation structures Sodium tetraphenylborate
下载PDF
In situ strength profiles along two adjacent vertical drillholes from digitalization of hydraulic rotary drilling 被引量:4
10
作者 Xuefan Wang Peng Peng +1 位作者 Zhigang Shan Zhongqi Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期146-168,共23页
Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from... Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects. 展开更多
关键词 Drilling process monitoring(DPM) Hydraulic rotary coring process Constant drilling speed Coring-resistant strength
下载PDF
In-situ study of precipitates in Al–Zn–Mg–Cu alloys using anomalous small-angle x-ray scattering
11
作者 杨春明 边风刚 +4 位作者 熊柏青 刘冬梅 李怡雯 滑文强 王劼 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期312-316,共5页
In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum al... In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys(7150 and 7085 Al alloys),are investigated by anomalous small-angle x-ray scattering(ASAXS) at various energies.The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side,while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge.Similar results are observed in the 7085 alloy in an aging process(120℃) by employing in-situ ASAXS measurements,indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min.In the aging process,the precipitate particles with an initial average size of ~ 8 ?A increase with aging time at an energy of 9.60 ke V,while the increase with a slower rate is observed at an energy of 9.65 ke V as near the Zn absorption edge. 展开更多
关键词 anomalous small-angle x-ray scattering ALLOY PRECIPITATES
下载PDF
Structural modeling of proteins by integrating small-angle x-ray scattering data
12
作者 张泳辉 彭俊辉 张志勇 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期16-21,共6页
Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has... Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. 展开更多
关键词 protein structure FLEXIBILITY computer simulations small-angle x-ray scattering integrative modeling
下载PDF
Investigation of the topological shape of bovine serum albumin in solution by small-angle x-ray scattering at Beijing synchrotron radiation facility
13
作者 董淑强 李丽琴 +2 位作者 刘鹏 董宇辉 陈熙萌 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4574-4579,共6页
This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radia- tion Facility, the topological shape of ligand-free bovine serum albumin in solution has been investiga... This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radia- tion Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2~=t=0.25 ~_ (11=0.1 nm) which is co- incident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed. 展开更多
关键词 small-angle x-ray scattering ab initio methods bovine serum albumin Beijing synchrotron radiation facility
下载PDF
Small-Angle X-Ray Scattering of Amorphous Germanium: Numerical Modeling
14
作者 R. Ben Brahim A. Chehaidar 《Advances in Materials Physics and Chemistry》 2013年第1期19-30,共12页
The present work deals with a detailed analysis of the small-angle X-ray scattering of nanoporous atomistic models for amorphous germanium. Structures with spherical nanovoids, others with arbitrarily oriented ellipso... The present work deals with a detailed analysis of the small-angle X-ray scattering of nanoporous atomistic models for amorphous germanium. Structures with spherical nanovoids, others with arbitrarily oriented ellipsoidal ones, with monodisperse and polydisperse size distributions, were first generated. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its X-ray scattering pattern. Using a smoothing procedure, the computed small-angle X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so, for the first time at our best knowledge, a rigorous quantitative analysis of this scattering. The Guinier’s law is found to be valid irrespective of size and shape of the nanovoids over a scattering vector-range extending beyond the expected limit. A weighted combination of the Guinier’s forms accounts for well the nanovoid size distribution in the amorphous structure. The invariance of the Q-factor and its relationship to the void volume fraction are also confirmed. Our findings support then the quantitative analyses of available small-angle X-ray scattering data for amorphous germanium. 展开更多
关键词 AMORPHOUS GERMANIUM Structure small-angle X-RAY SCATTERING MODELING
下载PDF
The Significance of Solutions Obtained from Ill-Posed Systems of Linear Equations Constituted by Synchrotron Radiation Based Anomalous Small-Angle X-Ray Scattering
15
作者 Günter Johannes Goerigk 《Advances in Linear Algebra & Matrix Theory》 2018年第1期64-86,共23页
Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e.... Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination. 展开更多
关键词 Matrix Inversion Condition NUMBERS LU-Decomposition Gaussian Elimination SYNCHROTRON Radiation ANOMALOUS small-angle X-Ray Scattering
下载PDF
New Technology of Multidirectional Loading Rotary Extrusion
16
作者 Zhimin Zhang Yong Xue +3 位作者 Xing Zhang Beibei Dong Mei Cheng Zhe Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期353-363,共11页
To satisfy the requirements for the precise formation of large-scale high-performance lightweight components with inner ring reinforcement, a new multidirectional loading rotary extrusion forming technology is develop... To satisfy the requirements for the precise formation of large-scale high-performance lightweight components with inner ring reinforcement, a new multidirectional loading rotary extrusion forming technology is developed to match the linear motion with the rotary motion and actively increases the strong shear force. Its principle is that the radial force and rotating torque increase when the blank is axially extruded and loaded. Through the synergistic action of axial, radial, and rotating motions, the orderly fow of metal is controlled, and the cumulative severe plastic deformation (SPD) of an“uplift-trowel” micro-area is generated. Consequently, materials are uniformly strengthened and toughened. Simultaneously, through the continuous deformation of a punch “ellipse-circle,” a high reinforcement component is grown on the cylinder wall to achieve the high-quality formation of cylindrical parts or the inner-ring-reinforcement components. Additionally, the efective strain increases with rotation speed, and the maximum intensity on the basal plane decreases as the number of revolutions increase. The punch structure also afects the axial extrusion loading and equivalent plastic strain. Thus, the proposed technology enriches the plastic forming theory and widens the application feld of plastic forming. Furthermore, the formed large-scale high-performance inner-ring-stifened magnesium components have been successfully verifed in aerospace equipment, thereby solving the problems of integral forming and severe deformation strengthening and toughening. The developed technology has good prospects for mass production and application. 展开更多
关键词 Multidirectional loading rotary extrusion Inner ring reinforcement Severe plastic deformation ANISOTROPY
下载PDF
Formation of nanocrystalline AZ31B Mg alloys via cryogenic rotary swaging
17
作者 Xin Chen Chuming Liu +3 位作者 Yingchun Wan Shunong Jiang Xiuzhu Han Zhiyong Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1580-1591,共12页
A bulk nanocrystalline AZ31B Mg alloy with extraordinarily high strength was prepared via cryogenic rotary swaging in this study.The obtained alloy shows finer grains,higher strength,and a negligible tension-compressi... A bulk nanocrystalline AZ31B Mg alloy with extraordinarily high strength was prepared via cryogenic rotary swaging in this study.The obtained alloy shows finer grains,higher strength,and a negligible tension-compression yield asymmetry,compared with that prepared via room-temperature rotary swaging.Transmission electron microscopy investigations showed that at the initial stage,multiple twins,mostly tension twins,were activated and intersected with each other,thereby refining the coarse grains into a fine lamellar structure.Then,two types of nanoscale subgrains were generated with increasing swaging strain.The first type of nanoscale subgrain contained twin boundaries and low-angle grain boundaries.This type of subgrain appeared at the twin-twin intersections and was mainly driven by high local stress.The second type of nanoscale subgrain was formed within the twin lamellae.The boundaries of this type of subgrain did not contain twin boundaries and were transformed from massive dislocation arrays.Finally,randomly oriented nanograins were obtained via dynamic recrystallization,under the combined function of deformation heat and increased stored energy.Compared with room-temperature rotary swaging,cryogenic rotary swaging exhibits a slower grain refinement process but a remarkably enhanced grain refinement effect after the same five-pass swaging. 展开更多
关键词 Cryogenic rotary swaging Nanocrystalline Mg alloy Grain refinement TWINNING Dislocation arrays
下载PDF
Multi-Objective Adaptive Optimization Model Predictive Control:Decreasing Carbon Emissions from a Zinc Oxide Rotary Kiln
18
作者 Ke Wei Keke Huang +1 位作者 Chunhua Yang Weihua Gui 《Engineering》 SCIE EI CAS CSCD 2023年第8期96-105,共10页
The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality ... The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality is putting new demands on the industry,including green production and the use of fewer resources;thus,traditional stability control is no longer suitable for multi-objective control tasks.Although researchers have revealed the principle of the rotary kiln and set up computational fluid dynamics(CFD)simulation models to study its dynamics,these models cannot be directly applied to process control due to their high computational complexity.To address these issues,this paper proposes a multi-objective adaptive optimization model predictive control(MAO-MPC)method based on sparse identification.More specifically,with a large amount of data collected from a CFD model,a sparse regression problem is first formulated and solved to obtain a reduction model.Then,a two-layered control framework including real-time optimization(RTO)and model predictive control(MPC)is designed.In the RTO layer,an optimization problem with the goal of achieving optimal operation performance and the lowest possible resource consumption is set up.By solving the optimization problem in real time,a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions in an optimal state.Our experiments show the strength and reliability of the proposed method,which reduces the usage of coal while maintaining high profits. 展开更多
关键词 Zinc oxide rotary kiln Model reduction Sparse identification Real-time optimization Model predictive control Process control
下载PDF
钢铁工业含锌尘泥回转窑处置技术的应用进展 被引量:1
19
作者 沈维民 叶恒棣 +2 位作者 张志波 倪桂虎 李谦 《烧结球团》 北大核心 2024年第1期11-17,55,共8页
钢铁冶炼过程(炼铁、炼钢)会产生大量的含锌尘泥,该尘泥不宜直接返回炼铁工序,一般以厂内长期堆存或外委等方式进行处理。随着我国钢铁企业“固废不出厂”“循环经济”“绿色制造”等新理念的深入推进,在钢铁厂内部采用新型回转窑技术... 钢铁冶炼过程(炼铁、炼钢)会产生大量的含锌尘泥,该尘泥不宜直接返回炼铁工序,一般以厂内长期堆存或外委等方式进行处理。随着我国钢铁企业“固废不出厂”“循环经济”“绿色制造”等新理念的深入推进,在钢铁厂内部采用新型回转窑技术直接处置含锌尘泥成为大势所趋。本文介绍了传统回转窑处置含锌尘泥技术的工艺流程,从原料、生产过程和产品特点等方面分析其不足,提出采用原料造球、多喷孔分级进风等创新技术的新型回转窑处置技术,该技术明显提高了回转窑处置能力,缓解了回转窑结圈,已相继在永锋钢铁、八一钢铁、诚钰环保等钢铁企业和环保公司稳定运行,产生了良好的经济与社会效益。该技术在多固废协同处置、热渣干式冷却等方面具备应用前景。 展开更多
关键词 钢铁企业 含锌固废 回转窑 资源循环
下载PDF
正流量液压挖掘机回转系统节能控制 被引量:1
20
作者 桑勇 岳亦锋 +3 位作者 李国锋 刘伟嵬 曹旭阳 王海洋 《液压气动与密封》 2024年第1期1-8,共8页
针对徐工某中型正流量挖掘机回转系统存在的较大溢流损失,设计了一种减小能量损失的节能控制方法。首先建立挖掘机回转系统关键部件模型;其次基于趋近律设计滑模控制器,根据模糊规则确定趋近律参数;最后根据马达溢流阀压力改变泵排量,... 针对徐工某中型正流量挖掘机回转系统存在的较大溢流损失,设计了一种减小能量损失的节能控制方法。首先建立挖掘机回转系统关键部件模型;其次基于趋近律设计滑模控制器,根据模糊规则确定趋近律参数;最后根据马达溢流阀压力改变泵排量,以实现泵输出流量对压力的快速响应,从而实现节能降耗的目的。经仿真分析,较挖掘机传统的开环控制与PID控制,采用模糊滑模控制下的泵输出流量明显减少,且马达转速较前两种算法变化不大,不会降低回转作业效率,可知设计的算法有效。 展开更多
关键词 正流量挖掘机 回转系统 模糊滑模 节能控制
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部