In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at b...In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at beamforming mode,which requires a realistic non-stationary channel environment.For the dynamic propagation emulation,an efficient closed-form probe weighting strategy minimizing the power angular spectrum(PAS)emulation errors is derived,substantially reducing the associated computational complexity.On the other hand,a novel probe selection algorithm is proposed to reproduce a more accurate fading environment.Various standard channel models and setup configurations are comprehensively simulated to validate the capacity of the proposed methods.The simulation results show that more competent active probes are selected with the proposed method compared to the conventional algorithms.Furthermore,the derived closedform probe weighting strategy offers identical accuracy to that obtained with complicated numerical optimization.Moreover,a realistic dynamic channel measured in an indoor environment is reconstructed with the developed methodologies,and 95.6%PAS similarity can be achieved with 6 active probes.The satisfactory results demonstrate that the proposed algorithms are suitable for arbitrary channel emulation.展开更多
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat...Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.展开更多
This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on...This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.展开更多
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested su...This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.展开更多
This paper attempts to study dolomite failure using small-scale blast tests.The experimental setup consisted of a cylindrical specimen with a central borehole fitted with a detonation cord inside a copper pipe.The spe...This paper attempts to study dolomite failure using small-scale blast tests.The experimental setup consisted of a cylindrical specimen with a central borehole fitted with a detonation cord inside a copper pipe.The specimen was confined using lead material.During the test,acceleration histories were recorded using sensors placed on the lead confinement.The results showed that heterogeneity and initial cracks significantly influenced the observed failure and cracking patterns.The tests were numerically represented using the previously validated Johnson-HolmquistⅡ(JH-2)constitutive model.The properties of the detonation cord were first determined and verified in a special test with a lead specimen to compare the deformation in the test with that of numerical simulation.Then,the small-scale blast test was simulated,and the failure of the dolomite was compared with the test observations.Comparisons of acceleration histories,scabbing failure,and number of radial cracks and crack density confirmed the overall repeatability of the actual testing data.It is likely that the proposed model can be further used for numerical studies of blasting of dolomite rock.展开更多
The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the pa...The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the particles experience when grouped under the action of the gravitational force. In this respect, the experimental test devices with different height, width, and depth were geometrically modeled with iron pellet particles using morphology and a granulometric variation from 6 mm to 9 mm of equivalent diameter in its spherical shape. Depending on the results obtained, a reliable size of the experimental test device will be available to obtain the necessary data for a correct adjustment of the calibration parameters for the DEM simulation of mining-metallurgical processes that use granulated material of iron pellet.展开更多
750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and step...750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.展开更多
According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart s...According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart substation secondary device digitization and information sharing are used by the technique. The principle of testing technique is as follow: the digital simulation model is constructed on the basis of the substation’s actual construction, then the simulating data highly similar to substation’s actual electric quantity transient process is generated, at last, the substation digital secondary device can be tested by using data “recurrence” technique. The testing technique is verified and applied by constructing testing system, the application results show that the technique can effectively perform field test on the dynamic performance of digital secondary device, and the technique has good engineering implementation and application value.展开更多
In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decad...In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decades, many researches on machine tool stiffness test and evaluation methodology have been made. However any methodology for a Pin Turning Device (PTD), which is a special kind of turning lathe for machining big size crankshaft pins, is rarely found among them. This study proposes a test and evaluation process of stiffness of a PTD by measuring frequency response function at the tool center point (TCP). For conformance proving for the proposed methodology, stiffness of a PTD obtained by the proposed method with impact hammer test (IHT) has been compared with that determined by FEM.展开更多
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de...A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.展开更多
Pressure guide plate plays a certain role in the safe operation of elevator.Based on understanding the respective performance of new and old pressure guide plates,this paper analyses the problems existing in the origi...Pressure guide plate plays a certain role in the safe operation of elevator.Based on understanding the respective performance of new and old pressure guide plates,this paper analyses the problems existing in the original pressure guide plate.It also conducts stress analysis according to the function of pressure guide plate on elevator,and designs a new type of pressure guide plate combined with technological capability and equipment.According to the stress characteristics,a test device is designed and a comparative test is made between the new type of pressure guide plate and the old in order to test the reliability of the new type of pressure guide plate.The test proves that the new pressure guide plate of elevator can meet the requirements of product use and safe operation of elevator products.展开更多
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefi...Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.展开更多
In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size,...In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size, confinement thickness on fragment velocity. The simulations were carried out using ANSYSAUTODYNE explicit solver. Fragment velocities were estimated as a function of different parametric combinations of explosive quantities, charge length to diameter ratio, fragment height to diameter ratio,confinement thickness, fragment material and fragment mass. The data was further converted to charge to metal ratio under fragment and confinement. It was observed that, increase in confinement thickness,charge quantity and decrease in fragment height increases the fragment velocity. It is also noted that,charge to metal mass ratio under fragment significantly affects the fragment velocity. At the end, an empirical relationship for fragment velocity interms of all these parameters was established. Using these relations, two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated. The design parameters for these velocities are presented. Also, the results estimated using the empirical relationship has been compared with published experimental data. Error in the predicted velocities is within the acceptable range. The empirical relationship proposed will be useful for finalization of design of the fragment launch device.展开更多
Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused ...Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.展开更多
The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning el...The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.展开更多
Our aim was to evaluate the potential use of BioMedFlex? (BMF), a new resilient, hard-carbon, thin- film coating, as a blood journal bearing material in Cleveland Heart’s continuous-flow left and right ven- tricular ...Our aim was to evaluate the potential use of BioMedFlex? (BMF), a new resilient, hard-carbon, thin- film coating, as a blood journal bearing material in Cleveland Heart’s continuous-flow left and right ven- tricular assist devices (VADs). BMF is not classified as a diamond-like carbon (DLC) and differs from other thin-film carbon coatings by its high flexural strength, radiopacity, and wear resistance. A 2- to 4-μm-thick BMF adhesion layer was deposited on the VAD journal bearing surfaces. A commercial DLC coating used in other clinical blood pump applications was used as a control. Durability and reliability of the BMF coating was verified in severe pump start/stop testing using 20 BMF-coated journal bearing pairs. The BMF-coated surfaces showed no coating failures, whereas 57% of the DLC bearing pairs developed scratches through the carbon coating, documenting that BMF can provide a durable coating in our blood journal bearing application. In conclusion, BMF has shown qualities that support its significant advantages as an alternative journal bea- ring material in Cleveland Heart pumps. Our plan includes biocompatibility testing with ongoing animal studies, endurance testing with submerged pumps running in saline, and assessment of batch coating processing capability.展开更多
A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper a...A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers.Then the modified paper was cut according to the specific design.Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper.By simply adding phosphate buffer,the reaction was performed on the double-layer PAD.Quantitative results were obtained by analyzing the color intensity with the specialized device system(consisting of a smartphone,a detection box and sandwich plates).The 3Dprinted detection box was small,with a size of 9.0 cm×7.0 cm×11.5 cm.Color component G performed well in terms of linearity and detection limits and thus was identified as the index.The reaction conditions were optimized using a definitive screening design.Moreover,a 10%glycerol solution was found to be a suitable stabilizer.When the stabilizer was added,the activity of XOD could be maintained for at least 15 days under 4℃ or-20℃ storage conditions.The inhibitory activity of SME was investigated and compared to that of allopurinol.The results obtained with the PAD showed agreement with those obtained with the microplate method.In conclusion,the proposed PAD method is simple,accurate and has a potential for point-of-care testing.It also holds promise for use in rapid quality testing of medicinal herbs,intermediate products,and preparations of traditional Chinese medicines.展开更多
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam...Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.展开更多
基金supported by National Natural Science Foundation of China(No.62090015,No.61821001)BUPT Excellent Ph.D.Students Foundation under Grant(CX2021216)。
文摘In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at beamforming mode,which requires a realistic non-stationary channel environment.For the dynamic propagation emulation,an efficient closed-form probe weighting strategy minimizing the power angular spectrum(PAS)emulation errors is derived,substantially reducing the associated computational complexity.On the other hand,a novel probe selection algorithm is proposed to reproduce a more accurate fading environment.Various standard channel models and setup configurations are comprehensively simulated to validate the capacity of the proposed methods.The simulation results show that more competent active probes are selected with the proposed method compared to the conventional algorithms.Furthermore,the derived closedform probe weighting strategy offers identical accuracy to that obtained with complicated numerical optimization.Moreover,a realistic dynamic channel measured in an indoor environment is reconstructed with the developed methodologies,and 95.6%PAS similarity can be achieved with 6 active probes.The satisfactory results demonstrate that the proposed algorithms are suitable for arbitrary channel emulation.
基金supported by the Implementation Programs for Marine Renewable Energy Special Funds (GHME2012ZC02)
文摘Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.
基金Project (No. E2005000039) supported by the Natural Science Foun-dation of Hebei Province, China
文摘This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.
基金Public Benefit Research Foundation under Grant No.201108006Natural Science Foundation under Grant No.51161120360+2 种基金Heilongjiang Overseas Funding under Grant No.LC201002 of ChinaGrant-in-Aid for Scientific Research(Basic Research Category A,19206060)Japan Society for the Promotion of Science
文摘This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.
基金supported by the Interdisciplinary Center for Mathematical and Computational Modeling(ICM),University of Warsaw(Grant No.GA73-19)as part of the implementation of the Military University of Technology(Grant No.22-876)。
文摘This paper attempts to study dolomite failure using small-scale blast tests.The experimental setup consisted of a cylindrical specimen with a central borehole fitted with a detonation cord inside a copper pipe.The specimen was confined using lead material.During the test,acceleration histories were recorded using sensors placed on the lead confinement.The results showed that heterogeneity and initial cracks significantly influenced the observed failure and cracking patterns.The tests were numerically represented using the previously validated Johnson-HolmquistⅡ(JH-2)constitutive model.The properties of the detonation cord were first determined and verified in a special test with a lead specimen to compare the deformation in the test with that of numerical simulation.Then,the small-scale blast test was simulated,and the failure of the dolomite was compared with the test observations.Comparisons of acceleration histories,scabbing failure,and number of radial cracks and crack density confirmed the overall repeatability of the actual testing data.It is likely that the proposed model can be further used for numerical studies of blasting of dolomite rock.
文摘The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the particles experience when grouped under the action of the gravitational force. In this respect, the experimental test devices with different height, width, and depth were geometrically modeled with iron pellet particles using morphology and a granulometric variation from 6 mm to 9 mm of equivalent diameter in its spherical shape. Depending on the results obtained, a reliable size of the experimental test device will be available to obtain the necessary data for a correct adjustment of the calibration parameters for the DEM simulation of mining-metallurgical processes that use granulated material of iron pellet.
文摘750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.
文摘According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart substation secondary device digitization and information sharing are used by the technique. The principle of testing technique is as follow: the digital simulation model is constructed on the basis of the substation’s actual construction, then the simulating data highly similar to substation’s actual electric quantity transient process is generated, at last, the substation digital secondary device can be tested by using data “recurrence” technique. The testing technique is verified and applied by constructing testing system, the application results show that the technique can effectively perform field test on the dynamic performance of digital secondary device, and the technique has good engineering implementation and application value.
文摘In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decades, many researches on machine tool stiffness test and evaluation methodology have been made. However any methodology for a Pin Turning Device (PTD), which is a special kind of turning lathe for machining big size crankshaft pins, is rarely found among them. This study proposes a test and evaluation process of stiffness of a PTD by measuring frequency response function at the tool center point (TCP). For conformance proving for the proposed methodology, stiffness of a PTD obtained by the proposed method with impact hammer test (IHT) has been compared with that determined by FEM.
基金supported by the National Natural Science Foundation of China (No. 40971046,41023003,40901039)the Project from the State Key Laboratory of Frozen Soil Engineering of China (No. 09SF102003)
文摘A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.
文摘Pressure guide plate plays a certain role in the safe operation of elevator.Based on understanding the respective performance of new and old pressure guide plates,this paper analyses the problems existing in the original pressure guide plate.It also conducts stress analysis according to the function of pressure guide plate on elevator,and designs a new type of pressure guide plate combined with technological capability and equipment.According to the stress characteristics,a test device is designed and a comparative test is made between the new type of pressure guide plate and the old in order to test the reliability of the new type of pressure guide plate.The test proves that the new pressure guide plate of elevator can meet the requirements of product use and safe operation of elevator products.
基金supported by the U.S.Agency for International Development (USAID) cooperation agreement(No.486-A-00-06-000140-00)
文摘Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
文摘In this article, parametric study of single confined fragment launch device was carried out. The configuration proposed was further studied to derive the empirical relationship for effect of fragment size,charge size, confinement thickness on fragment velocity. The simulations were carried out using ANSYSAUTODYNE explicit solver. Fragment velocities were estimated as a function of different parametric combinations of explosive quantities, charge length to diameter ratio, fragment height to diameter ratio,confinement thickness, fragment material and fragment mass. The data was further converted to charge to metal ratio under fragment and confinement. It was observed that, increase in confinement thickness,charge quantity and decrease in fragment height increases the fragment velocity. It is also noted that,charge to metal mass ratio under fragment significantly affects the fragment velocity. At the end, an empirical relationship for fragment velocity interms of all these parameters was established. Using these relations, two velocities 1831.92 m/s and 2523.9 m/s required for NATO STANAG 4496 IM test were estimated. The design parameters for these velocities are presented. Also, the results estimated using the empirical relationship has been compared with published experimental data. Error in the predicted velocities is within the acceptable range. The empirical relationship proposed will be useful for finalization of design of the fragment launch device.
基金supported by the National Natural Science Foundation of China(Grant No.61904127 and 62004144)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515010651)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.202401002,203134004,20212VA100 and 2021VB006)Hubei Provincial Natural Science Foundation of China(Grant No.2020CFA032)National Key R&D Program of China(Grant No.2019YFB1704600)。
文摘Interconnections in microelectronic packaging are not only the physical carrier to realize the function of electronic circuits,but also the weak spots in reliability tests.Most of failures in power devices are caused by the malfunction of interconnections,including failure of bonding wire as well as cracks of solder layer.In fact,the interconnection failure of power devices is the result of a combination of factors such as electricity,temperature,and force.It is significant to investigate the failure mechanisms of various factors for the failure analysis of interconnections in power devices.This paper reviews the main failure modes of bonding wire and solder layer in the interconnection structure of power devices,and its failure mechanism.Then the reliability test method and failure analysis techniques of interconnection in power device are introduced.These methods are of great significance to the reliability analysis and life prediction of power devices.
基金the National Natural Science Foundation of China (Grant No. 11772058)。
文摘The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.
文摘Our aim was to evaluate the potential use of BioMedFlex? (BMF), a new resilient, hard-carbon, thin- film coating, as a blood journal bearing material in Cleveland Heart’s continuous-flow left and right ven- tricular assist devices (VADs). BMF is not classified as a diamond-like carbon (DLC) and differs from other thin-film carbon coatings by its high flexural strength, radiopacity, and wear resistance. A 2- to 4-μm-thick BMF adhesion layer was deposited on the VAD journal bearing surfaces. A commercial DLC coating used in other clinical blood pump applications was used as a control. Durability and reliability of the BMF coating was verified in severe pump start/stop testing using 20 BMF-coated journal bearing pairs. The BMF-coated surfaces showed no coating failures, whereas 57% of the DLC bearing pairs developed scratches through the carbon coating, documenting that BMF can provide a durable coating in our blood journal bearing application. In conclusion, BMF has shown qualities that support its significant advantages as an alternative journal bea- ring material in Cleveland Heart pumps. Our plan includes biocompatibility testing with ongoing animal studies, endurance testing with submerged pumps running in saline, and assessment of batch coating processing capability.
基金The authors would like to thank the support of the National S&T Major Project of China(Grant No.:2018ZX09201011)the National Natural Science Foundation of China(Grant No.:81503242)the Fundamental Research Funds for the Central Universities(Grant No.:2018FZA7018).
文摘A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers.Then the modified paper was cut according to the specific design.Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper.By simply adding phosphate buffer,the reaction was performed on the double-layer PAD.Quantitative results were obtained by analyzing the color intensity with the specialized device system(consisting of a smartphone,a detection box and sandwich plates).The 3Dprinted detection box was small,with a size of 9.0 cm×7.0 cm×11.5 cm.Color component G performed well in terms of linearity and detection limits and thus was identified as the index.The reaction conditions were optimized using a definitive screening design.Moreover,a 10%glycerol solution was found to be a suitable stabilizer.When the stabilizer was added,the activity of XOD could be maintained for at least 15 days under 4℃ or-20℃ storage conditions.The inhibitory activity of SME was investigated and compared to that of allopurinol.The results obtained with the PAD showed agreement with those obtained with the microplate method.In conclusion,the proposed PAD method is simple,accurate and has a potential for point-of-care testing.It also holds promise for use in rapid quality testing of medicinal herbs,intermediate products,and preparations of traditional Chinese medicines.
文摘Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.