期刊文献+
共找到3,722篇文章
< 1 2 187 >
每页显示 20 50 100
Mechanism of Diabatic Heating on Precipitation and the Track of a Tibetan Plateau Vortex over the Eastern Slope of the Tibetan Plateau
1
作者 Yuanchang DONG Guoping LI +3 位作者 Xiaolin XIE Long YANG Peiwen ZHANG Bo ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期155-172,共18页
Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How... Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP. 展开更多
关键词 eastern slope of the Tibetan Plateau diabatic heating Tibetan Plateau vortex precipitation distribution TRACK
下载PDF
Density disturbance of small-scale fieldaligned irregularities in the ionosphere heating experiments
2
作者 王翔 周晨 +2 位作者 刘默然 倪彬彬 赵正予 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期9-18,共10页
A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is... A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification.Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m^(-1). The theoretical results are consistent with those of the experiments. 展开更多
关键词 small-scale irregularities ionosphere heating experiment thermal parametric instability resonant instability
下载PDF
Case Study:Promoting Sustainable Energy Greenhouse Heating Systems to Small-Scale Local Farms
3
作者 Jeremy Ferrell Ok-Youn Yu Heiyoung Kim 《Journal of Agricultural Science and Technology(A)》 2020年第4期165-180,共16页
Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,Nort... Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest. 展开更多
关键词 GREENHOUSE sustainable energy farms heating system small-scale.
下载PDF
A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable 被引量:13
4
作者 Dingfeng Cao Bin Shi +3 位作者 Honghu Zhu Guangqing Wei Shen-En Chen Junfan Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期700-707,共8页
Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a ... Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas. 展开更多
关键词 In-situ soil moisture content distributed measurement Carbon-fiber heated cable (CFHC) Fiber-optic sensing
下载PDF
Performance evaluation of two types of heated cables for distributedtemperature sensing-based measurement of soil moisture content 被引量:7
5
作者 Dingfeng Cao Bin Shi +3 位作者 Honghu Zhu Kun Zhu Guangqing Wei Kai Gu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期212-217,共6页
Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav... Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m). 展开更多
关键词 Soil moisture content Carbon-fiber heated cable(CFHC) Metal-net heated cable(MNHC) distributed measurement Optical fiber
下载PDF
A Model for Regional Energy Utilization by Offline Heat Transport System and Distributed Energy Systems—Case Study in a Smart Community, Japan 被引量:4
6
作者 Liyang Fan Weijun Gao Zhu Wang 《Energy and Power Engineering》 2013年第3期190-205,共16页
Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more... Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more challenge is, afterFukushimacrisis, without the nuclear energy,Japanmay produce about 15 percent more GHG emissions than1990 inthis fiscal year. It still has to struggle to meet the target set by Kyoto Protocol. The demonstration area of “smart community” suggests Japanese exploration for new low carbon strategies. The study proposed a demand side response energy system, a dynamic tree-like hierarchical model for smart community. The model not only conveyed the concept of smart grid, but also built up a smart heat energy supply chain by offline heat transport system. Further, this model promoted a collaborative energy utilization mode between the industrial sector and the civil sector. In addition, the research chose the smart community inKitakyushuas case study and executed the model. The simulation and the analysis of the model not only evaluate the environmental effect of different technologies but also suggest that the smart community inJapanhas the potential but not easy to achieve the target, cut down 50% of the CO2 emission. 展开更多
关键词 Smart Community DEMAND Side Response distributed Energy SYSTEM Reutilize FACTORY EXHAUST heat OFFLINE heat Transport SYSTEM
下载PDF
Novel Radiation-Adjustable Heating Terminal Based on Flat Heat Pipe Combined with Air Source Heat Pump
7
作者 Yifan Wu Hongli Sun +3 位作者 Mengfan Duan Borong Lin Hengxin Zhao Chaohung Liu 《Engineering》 SCIE EI CAS CSCD 2023年第1期192-207,共16页
The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking c... The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking central heating. However, as a major component of space heating, heating terminals might not fit well with ASHP in order to achieve both intermittency and comfort. Therefore, this study proposes a novel radiation-adjustable heating terminal combined with an ASHP to achieve electrification, intermittency, and better thermal comfort. Radiant terminals currently suffer from three major problems: limited maximum heating capacity, inability to freely adapt, and difficulty with combining them with ASHPs. These problems were solved by improving the structural design of the novel terminal (Improvement A–E). Results showed that the maximum heating capacity increased by 23.6% and radiation heat transfer ratio from 10.1% to 30.9% was provided for users with the novel terminal. Further, new flat heat pipe (FHP) design improved stability (compressor oil return), intermittency (refrigerant thermal inertia), and safety (refrigerant leakage risk) by reducing the length of exposed refrigerant pipes. Furthermore, a new phased operation strategy was proposed for the novel terminal, and the adjustability of the terminal was improved. The results can be used as reference information for decarbonizing buildings by electrifying heating terminals. 展开更多
关键词 Novel heating terminal Air-source heat pump Structural impr ovement design Maximum heating capacity Rapid adjustability Room temperature distribution
下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
8
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC heat Transfer Model Temperature distribution Numerical Simulation High Temperature Operation
下载PDF
Numerical Simulation of the Effect of Air Distribution on Turbulent Flow and Combustion in a Tubular Heating Furnace 被引量:1
9
作者 WangJuan MaoYu LiLihong 《Petroleum Science》 SCIE CAS CSCD 2005年第1期44-47,共4页
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c... A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress. 展开更多
关键词 Tubular heating furnace turbulent flow COMBUSTION air distribution numerical simulation
下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing
10
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) heat transfer Pile‒soil interface
下载PDF
Spatial Distributions of Atmospheric Radiative Fluxes and Heating Rates over China during Summer 被引量:1
11
作者 YANG Da-Sheng WANG Pu-Cai 《Atmospheric and Oceanic Science Letters》 2010年第5期248-251,共4页
The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the... The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the lower atmosphere over central China to be smaller than the fluxes over southern and northern China by generating more clouds. The existence of a larger quantity of clouds over central China reflects a greater amount of solar radiation back into space. The vertical gradients of upward shortwave radiative fluxes in the atmosphere below 8 km are greater than those above 8 km. The latitudinal-altitude distributions of downward longwave radiative fluxes show a slantwise decreasing trend from low latitudes to high latitudes that gradually weaken in the downward direction. The upward longwave radiative fluxes also weaken in the upward direction but with larger gradients. The maximum heating rates by solar radiation and cooling rates by longwave infrared radiation are located over 28 40°N at 7 8 km mean sea level (MSL), and they are larger than the rates in the northern and southern regions. The heating and cooling rates match well both vertically and geographically. 展开更多
关键词 辐射通量 低层大气 中国 升温速率 空间分布 低纬度地区 太阳辐射量 夏季
下载PDF
A Cogeneration System for an Apartment Building Based on Distributed Heat Storage Technology 被引量:1
12
作者 H. Morita H. Yamaguchi +1 位作者 Y. Kiuchi Y. Hisazumi 《Journal of Energy and Power Engineering》 2010年第12期9-16,共8页
关键词 热电联产系统 分布式发电系统 公寓楼 蓄热 技术 大厦 热量储存 供热系统
下载PDF
Temperature distribution of boron-manganese sheet metal blank by induction heating in application for hot stamping
13
作者 Xu Ya Liu Peixing +1 位作者 Wang Zijian Zhang Yisheng 《Engineering Sciences》 EI 2014年第5期21-27,共7页
In order to speed up the production and save more energy in hot stamping process,the induction heating technology as a new effective heating method is considerable.Finite element(FE)-simulation and a series of experim... In order to speed up the production and save more energy in hot stamping process,the induction heating technology as a new effective heating method is considerable.Finite element(FE)-simulation and a series of experiments are carried out to research the temperature homogenization of induction heating with the face inductor.It is found the edge effect has a notable influence on the temperature distribution.Results concerning the mechanical properties of the stamped part as well as surface characteristics will be presented and discussed. 展开更多
关键词 感应加热技术 温度分布 金属片 烫印 应用 加热方法 边缘效应 机械性能
下载PDF
Morphology, size and distribution of MnS inclusions in non-quenched and tempered steel during heat treatment 被引量:9
14
作者 Xiao-jing Shao Xin-hua Wang +3 位作者 Chen-xi Ji Hai-bo Li Yang Cui Guo-sen Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第5期483-491,共9页
This article reports the morphology, size, and distribution evolution of MnS inclusions in non-quenched and tempered steel during heat treatment. The variation of single large-sized MnS inclusions at high temperature ... This article reports the morphology, size, and distribution evolution of MnS inclusions in non-quenched and tempered steel during heat treatment. The variation of single large-sized MnS inclusions at high temperature was observed in situ using a confocal scanning laser microscope (CSLM). The slender MnS inclusions first changed to pearl-like slrings. These small-sized pearls subsequently coalesced and became closer together as the temperature increased. Large-sized MnS inclusions in non-quenched and tempered steel samples with different thermal histories were investigated with respect to the evolution of their morphology, size, and distribution. After 30 min of ovulation at 1573 K, the percentage of MnS inclusions larger than 3 μm decreased from 50.5% to 3.0%. After a 3 h making period, Ostwald ripening occurred. Most MnS inclusions moved from the grain bounda- ries to the interior. The present study demonstrates that heat treatment is an effective method of changing the morphology, size, and distribution of MnS inclusions, especially large-sized ones. 展开更多
关键词 steel heat treatment INCLUSIONS manganese sulfide MORPHOLOGY SIZE distributION
下载PDF
Distribution performance of gas–liquid mixture in the shell side of spiral-wound heat exchangers 被引量:5
15
作者 Wenke Zheng Weihua Cai Yiqiang Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2284-2292,共9页
The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important paramete... The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase. 展开更多
关键词 Spiral-wound heat EXCHANGER Gas–liquid MIXTURE MULTIPHASE flow distributION UNIFORMITY
下载PDF
Effect of Particle Size Distribution on Radiative Heat Transfer in High-Temperature Homogeneous Gas-Particle Mixtures 被引量:3
16
作者 LIANG Dong HE Zhenzong +1 位作者 XU Liang MAO Junkui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期733-746,共14页
The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engi... The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size. 展开更多
关键词 particle size distribution WSGG radiative heat transfer gas-particle mixtures
下载PDF
Investigation on inductive heating of A356 alloy for thixo-forming 被引量:1
17
作者 Kai-kun Wang Jian-lin Sun +3 位作者 Yong-lin Kang Qi Zhang Lei Yang Chun-mei Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期309-313,共5页
To meet the demands of continuous stream-line for component production in the thixo-forming industry, billet heating should be of high quality and in a controllable way. A 4-step inductive heating strategy for aluminu... To meet the demands of continuous stream-line for component production in the thixo-forming industry, billet heating should be of high quality and in a controllable way. A 4-step inductive heating strategy for aluminum alloy A356 was performed. Thixotropic testing and microstructure analysis showed that a homogenous temperature distribution was achieved after temperature-power-time optimization. Theoretical analysis was given concerning the thermal conductivity and heat capacity of A356 between conventional and semisolid casting microstructures. The experimental results show that the optimized 4-step strategy could be the best strategy for billet heating during the thixo-forming of aluminum alloy A356. 展开更多
关键词 Thixo-forming aluminum alloys inductive heating temperature distribution
下载PDF
Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode 被引量:1
18
作者 王福敏 甘开福 龚先祖 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第3期225-229,共5页
An infrared camera (IR) has been put into operation in the Experimental Advanced Superconducting Tokamak (EAST), which is used to measure the temperature distribution on the surface of lower divertor target plates... An infrared camera (IR) has been put into operation in the Experimental Advanced Superconducting Tokamak (EAST), which is used to measure the temperature distribution on the surface of lower divertor target plates. With a finite difference method, the heat flux onto the divertor target plates is calculated from the surface temperature profile. The high confinement mode (H-mode) with type-III edge localized modes (ELMs) has been obtained with about 1 MW lower-hybrid wave power on the EAST in the autumn experiment in 2010. The analyzed H-mode discharges were lower single null X-point diverted discharges with a density range of 〈 ne 〉 (1 - 4) × 10^19 m-3. The surface temperature of the inner target plate increases with heating power. The peak temperature on the surface of target plates is lower than 200 ~C with about 2.4 MW heating power. Comparison among the heat flux profiles occurring in different phases in the same discharge has been performed. It indicates that the heat flux profile obviously changes from the ohmic phase to the H-mode phase, and the full width at half maximum (FWHM) of the heat flux profile is the narrowest during the ELM-free H-phase. On the outer target plate, the peak heat flux exceeds 2 MW/m2 during the ELMy H-mode phase, whereas it is only about 0.8 MW/m2 during the ELM-free phase in the same discharge. 展开更多
关键词 EAST tokamak IR camera temperature distribution lower targets heat flux
下载PDF
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
19
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization op... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits. 展开更多
关键词 Multi-objective optimization energy management initiative optimization distributed energy sources combined cooling heating and power(CCHP) operation strategy
下载PDF
Temperature distributions in concrete box girders due to heat of concrete hydration 被引量:1
20
作者 梅竹 贾艳敏 李成玉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期47-51,共5页
Based on heat transfer theory,a two-dimensional complex exponential function was used to compute heat of concrete hydration.A concrete box girder consisting of a single box with two cells used on Harbin Songpu Bridge ... Based on heat transfer theory,a two-dimensional complex exponential function was used to compute heat of concrete hydration.A concrete box girder consisting of a single box with two cells used on Harbin Songpu Bridge was measured on site.The two coefficients in the complex exponential function were determined to best fit the field measured data.ABAQUS program was used to simulate the heat transfer and determine the temperature distribution in the concrete box girders during concrete setting.The calculated temperature distribution in the box girders were compared with the field measured data and good agreement was observed.The temperature distribution and gradient in the entire box section,webs and bottom slab were analyzed using the measured and calculated results during the course of concrete hydration. 展开更多
关键词 heat of hydration temperature distribution box girder bridge concrete hydration
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部