This study conducted an in-depth analysis of the current tax preferential policies for small-scale individual businesses and compared them with similar policies both domestically and internationally,aiming to reveal t...This study conducted an in-depth analysis of the current tax preferential policies for small-scale individual businesses and compared them with similar policies both domestically and internationally,aiming to reveal the advantages and disadvantages of the current system.After examining the impact of these tax preferential policies on the economic status of individual business owners and the broader social economy,this article proposes a set of innovative tax preferential strategies based on theoretical foundations.By developing these innovative strategies and clarifying their implementation paths,the aim is to promote the sustainable and healthy development of small-scale individual businesses,thereby fostering comprehensive socio-economic progress.The conclusion of this study not only summarizes policy recommendations with practical significance but also provides theoretical support for the optimization and innovation of future related systems.展开更多
The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as b...The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.展开更多
When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positi...When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
In Balochistan, Agriculture is dominated by small-scale farmers and the apple production sector is confronted with the chronic constraint of low output per unit of input. Although some agricultural policies have been ...In Balochistan, Agriculture is dominated by small-scale farmers and the apple production sector is confronted with the chronic constraint of low output per unit of input. Although some agricultural policies have been implemented in this province, studies on effectiveness and impacts of such policies over apple production and farmers' performance are still limited. This study is an effort to bridge the research gap on this potential crop in the plateau by investigating technical and scale efficiency of 181 officially designated small-scale apple farmers in mountainous district Mastung in Balochistan; then explored factors that underlie differences in production inefficiency. A two-stage input-oriented Data Envelopment Analysis(DEA) methodology was employed to evaluate technical and scale efficiency followed by truncated bootstrapped regression framework to analyze the correlative determinants to efficiency. Average technical and scale efficiencies of larger landholders were higher than medium and small landholders. Analysis indicated that there is still ample scope for inefficient sample farmers to reduce the input use by 33% without compromising the given yield level. Maximum contributions to the total input savings were from the use of urea, farm yard manure(FYM) and labor-use. Farmer's experience, farm ownership, irrigation constraints, and farmer's access to trainings, credit and extension services significantly affected apple farmers' technical efficiency. Based on the findings of this study, strategies are suggested to enhancing efficiencies by farmers' capacity development through effective extension services and trainings and provision of adequate credit.展开更多
This paper attempts to study dolomite failure using small-scale blast tests.The experimental setup consisted of a cylindrical specimen with a central borehole fitted with a detonation cord inside a copper pipe.The spe...This paper attempts to study dolomite failure using small-scale blast tests.The experimental setup consisted of a cylindrical specimen with a central borehole fitted with a detonation cord inside a copper pipe.The specimen was confined using lead material.During the test,acceleration histories were recorded using sensors placed on the lead confinement.The results showed that heterogeneity and initial cracks significantly influenced the observed failure and cracking patterns.The tests were numerically represented using the previously validated Johnson-HolmquistⅡ(JH-2)constitutive model.The properties of the detonation cord were first determined and verified in a special test with a lead specimen to compare the deformation in the test with that of numerical simulation.Then,the small-scale blast test was simulated,and the failure of the dolomite was compared with the test observations.Comparisons of acceleration histories,scabbing failure,and number of radial cracks and crack density confirmed the overall repeatability of the actual testing data.It is likely that the proposed model can be further used for numerical studies of blasting of dolomite rock.展开更多
In recent years, China has been frequented by floods and droughts which has greatly evoked much concern from the Central Government about rural water conservancy construction. Irrigation is closely related to the &quo...In recent years, China has been frequented by floods and droughts which has greatly evoked much concern from the Central Government about rural water conservancy construction. Irrigation is closely related to the "three rural" issues and concerns about the vital interests of farmers. To achieve a virtuous circle of agricultural water supply, it is necessary and urgent to establish Farmer Water User Association (FWUA) to participate in the construction, management and maintenance of small-scale irrigation system. Based on the survey on nationwide "Small-scale irrigation conditions", the roles of FWUA in the construction, management and maintenance of small-scale water conservancy have studied in this study.展开更多
Active control of a fully developed turbulence boundary layer(TBL) over a flat plate has been investigated with a statistical view. The piezoelectric(PZT) oscillator is employed to produce periodic input into the inne...Active control of a fully developed turbulence boundary layer(TBL) over a flat plate has been investigated with a statistical view. The piezoelectric(PZT) oscillator is employed to produce periodic input into the inner region of the TBL.A wall probe is fixed upstream of the oscillator to identify the high-or low-speed fluctuations as the detecting signals.Then, the impact of the detecting signals on the small-scale bursting process is investigated based on the data acquired by the traversing probe downstream of the oscillator. The results indicate that the small-scale bursting intensity is restrained more apparently at high-speed detecting fluctuations but less impacted at low-speed detecting fluctuations. Furthermore, the perturbed-scale fluctuations arrange the small-scale bursting process in the near-wall region. The detecting signals have an obvious impact on this arrangement, especially the high-intensity regions of the small-scale bursting events: the vibration enhances the intensity at high-speed detecting signals but weakens it at low-speed detecting signals in these regions, which gives a direct evidence on how detecting signals interfering the small-scale bursting process.展开更多
It has been shown that farmers with limited knowledge of the use and safe handling of pesticides may suffer exposure which results in adverse health effects. In Buea, Cameroon, small-scale tomato farmers commonly use ...It has been shown that farmers with limited knowledge of the use and safe handling of pesticides may suffer exposure which results in adverse health effects. In Buea, Cameroon, small-scale tomato farmers commonly use pesticides for pest control. Information was obtained from these tomato farmers to determine the extent and types of their pesticide use, their knowledge of pesticide use and effectiveness, and their perception of potential harm resulting from pesticide use. A standardized questionnaire, interviews, field observations and an analytical ranking game were used to describe the pesticide use of 93 tomato farmers. Many farmers (47.6%) used pyrethiod and organophosphorus insecticides and identified these chemicals as the most effective in pesticide control;these are WHO Class II pesticides which are the most hazardous to humans. Most farmers (83.8%) used knapsack sprayers to apply pesticides, with 76.3% using no or partial personal protective equipment (PPE). It was notable that 55.5% of farmers expressed no concern regarding the wind direction (pesticide drift) during spraying. The results showed a significant association between the method of pesticides application and farm size (P < 0.001). Most farmers (85.0%) reported at least one symptom of acute pesticide poisoning following spraying. This study revealed that the tomato farmers have a high exposure to pesticides secondary to inadequate knowledge of the safe and judicious use of pesticides. Strategies that provide training on the appropriate use of pesticides, how to reduce exposure to and health risks of pesticides and alternative options of pest management and control are required. The study also raised concerns that further control of the sale and distribution of pesticides may be indicated.展开更多
Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes,which causes the degradation of the coastal ecosystem and the biodiversity function.In this s...Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes,which causes the degradation of the coastal ecosystem and the biodiversity function.In this study,we explored the changes of tidal flat and salt marsh coverage in a small-scale tidal flat with an area of ~160 000 m^2 in the plain coast of Jiangsu Province,China.Human activities(e.g.,the construction of dikes) are a crucial contributor that benefits for the tidal flat accretions and the following changes of salt marsh coverage.Located in the front of the man-made "concave coastline",the study area is suitable for sediment accretion after the dike construction in the end of 2006.On the basis of the annual tidal surface elevation survey from 2007 to 2012,the sedimentation rates in the human influenced tidal flat varied from a few centimeters per year to 23 cm/a.The study area experienced a rapid accretion in the tidal flat and the expansion of the salt marsh,with the formation of a longshore bar,and a subsequent decline of the salt marsh.Breaking waves during the flooding tide brought much sediment from the adjacent tidal flat to the study area,which caused burial and degeneration of the salt marsh.The vertical grain size changes within a 66 cm long core in the study area also demonstrated the above changes in the tidal environment.This study indicates that the responses of small-scale tidal flat changes to reclamation are significant,and the rational reclamation would benefit for the new salt marsh formation in front of the dikes.Further research about the evolution of small scale tidal flat as well as the spatial planning of the polder dike should be strengthened for the purpose to maintain a healthier coastal environment.展开更多
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist...The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.展开更多
Fisheries management worldwide struggles to strike a balance between protecting resources,ensuring fair access to resources and promoting economic effectiveness and stability.The transition to a participatory democrac...Fisheries management worldwide struggles to strike a balance between protecting resources,ensuring fair access to resources and promoting economic effectiveness and stability.The transition to a participatory democracy in South Africa in 1994 resulted in the transformation of government institutions and an extensive process of legislative reform regarding展开更多
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ...Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.展开更多
Genes are continually being created by the processes of genome duplication (ohnolog) and gene duplication (paralog). Whole-genome duplications have been found to be widespread in plant species and play an importan...Genes are continually being created by the processes of genome duplication (ohnolog) and gene duplication (paralog). Whole-genome duplications have been found to be widespread in plant species and play an important role in plant evolution. Clearly un-overlapping duplicated blocks of whole-genome duplications can be detected in the genome of sequenced rice (Oryza sativa). Syntenic ohnolog pairs (ohnologues) of the whole-genome duplications in rice were identified based on their syntenic duplicate lines. The paralogs of ohnologues were further scanned using multi-round reciprocal BLAST best-hit searching (E〈e^-14). The results indicated that an average of 0.55 sister paralogs could be found for every ohnologue in rice. These results suggest that small-scale duplications, as well as whole-genome duplications, play a significant role in the two duplicated rice genomes.展开更多
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechani...The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method.展开更多
A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is...A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification.Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m^(-1). The theoretical results are consistent with those of the experiments.展开更多
In an attempt to identify solutions to the effects of erratic rainfall patterns and droughts that limit agricultural production growth,the Rwandan government has recently increased investments in irrigation developmen...In an attempt to identify solutions to the effects of erratic rainfall patterns and droughts that limit agricultural production growth,the Rwandan government has recently increased investments in irrigation development.In this study,we analyze the adoption of small-scale irrigation technologies(SSITs)and its impact on land productivity using cross-sectional data from a sample of 360 farmers in Rwanda.The study uses the propensity score matching technique to address potential self-selection bias.Our results reveal that adoption decisions are significantly influenced by factors such as education,farm size,group membership,gender,extension services,access to credit,access to weather forecast information,risk perceptions,access to a reliable source of water for irrigation,awareness of rainwater harvesting techniques,and awareness of subsidy programs.In addition,the results show that the adoption of SSITs has a significantly positive impact on land productivity.The study concludes with policy implications that highlight the need to promote the adoption of SSITs among farmers as a strategy to improve agricultural productivity and food security in Rwanda.展开更多
Small-scale farmer is defined by the domestic and foreign experts and scholars.They point out that since the fragmentation of production and the diseconomy of scale in small-scale farmer is inconsistent with the chara...Small-scale farmer is defined by the domestic and foreign experts and scholars.They point out that since the fragmentation of production and the diseconomy of scale in small-scale farmer is inconsistent with the characteristics of scale and technology of modern agricultural production,it is necessary to eliminate the adverse effects of existing mode in order to provide theoretical references for the relevant researches.Citrus industry in Shimen County,Hunan Province,China is introduced from the aspects of natural geographical condition and socio-economic benefit.Impact of small-scale production mode on citrus production in Shimen County is discussed.Firstly,blindness of small-scale production is the main reason leading to overproduction of citrus.Secondly,small-scale production mode has limitation on the acceptance of new technologies,restricts the operation of geographical trademark,and constraints the enthusiasm of enterprises in entering the agricultural field.Finally,suggestions are put forward,such as encouraging the circulation of rural land,improving the organization degree of farmers,changing the work function of grass-roots government and perfecting the agricultural financial credit system.展开更多
Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,Nort...Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest.展开更多
文摘This study conducted an in-depth analysis of the current tax preferential policies for small-scale individual businesses and compared them with similar policies both domestically and internationally,aiming to reveal the advantages and disadvantages of the current system.After examining the impact of these tax preferential policies on the economic status of individual business owners and the broader social economy,this article proposes a set of innovative tax preferential strategies based on theoretical foundations.By developing these innovative strategies and clarifying their implementation paths,the aim is to promote the sustainable and healthy development of small-scale individual businesses,thereby fostering comprehensive socio-economic progress.The conclusion of this study not only summarizes policy recommendations with practical significance but also provides theoretical support for the optimization and innovation of future related systems.
文摘The small-scale drilling technique can be a fast and reliable method to estimate rock strength parameters. It needs to link the operational drilling parameters and strength properties of rock. The parameters such as bit geometry, bit movement, contact frictions and crushed zone affect the estimated parameters.An analytical model considering operational drilling data and effective parameters can be used for these purposes. In this research, an analytical model was developed based on limit equilibrium of forces in a Tshaped drag bit considering the effective parameters such as bit geometry, crushed zone and contact frictions in drilling process. Based on the model, a method was used to estimate rock strength parameters such as cohesion, internal friction angle and uniaxial compressive strength of different rock types from operational drilling data. Some drilling tests were conducted by a portable and powerful drilling machine which was developed for this work. The obtained results for strength properties of different rock types from the drilling experiments based on the proposed model are in good agreement with the results of standard tests. Experimental results show that the contact friction between the cutting face and rock is close to that between bit end wearing face and rock due to the same bit material. In this case,the strength parameters, especially internal friction angle and cohesion, are estimated only by using a blunt bit drilling data and the bit bluntness does not affect the estimated results.
基金supported by the National Scientific Foundation of China (Grant no. 41506085)the Open Foundation of the Key Laboratory of Gas Hydrate, Ministry of Land and Resources, China (Grant no. SHW [2014]-DX-12)the China Geological Survey Project (Grant no. DD20160213)
文摘When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
基金supported by core funds of the Higher Education Commission (HEC) of Pakistan and the University of Balochistan (Reg.440/07),under Faculty Development Project
文摘In Balochistan, Agriculture is dominated by small-scale farmers and the apple production sector is confronted with the chronic constraint of low output per unit of input. Although some agricultural policies have been implemented in this province, studies on effectiveness and impacts of such policies over apple production and farmers' performance are still limited. This study is an effort to bridge the research gap on this potential crop in the plateau by investigating technical and scale efficiency of 181 officially designated small-scale apple farmers in mountainous district Mastung in Balochistan; then explored factors that underlie differences in production inefficiency. A two-stage input-oriented Data Envelopment Analysis(DEA) methodology was employed to evaluate technical and scale efficiency followed by truncated bootstrapped regression framework to analyze the correlative determinants to efficiency. Average technical and scale efficiencies of larger landholders were higher than medium and small landholders. Analysis indicated that there is still ample scope for inefficient sample farmers to reduce the input use by 33% without compromising the given yield level. Maximum contributions to the total input savings were from the use of urea, farm yard manure(FYM) and labor-use. Farmer's experience, farm ownership, irrigation constraints, and farmer's access to trainings, credit and extension services significantly affected apple farmers' technical efficiency. Based on the findings of this study, strategies are suggested to enhancing efficiencies by farmers' capacity development through effective extension services and trainings and provision of adequate credit.
基金supported by the Interdisciplinary Center for Mathematical and Computational Modeling(ICM),University of Warsaw(Grant No.GA73-19)as part of the implementation of the Military University of Technology(Grant No.22-876)。
文摘This paper attempts to study dolomite failure using small-scale blast tests.The experimental setup consisted of a cylindrical specimen with a central borehole fitted with a detonation cord inside a copper pipe.The specimen was confined using lead material.During the test,acceleration histories were recorded using sensors placed on the lead confinement.The results showed that heterogeneity and initial cracks significantly influenced the observed failure and cracking patterns.The tests were numerically represented using the previously validated Johnson-HolmquistⅡ(JH-2)constitutive model.The properties of the detonation cord were first determined and verified in a special test with a lead specimen to compare the deformation in the test with that of numerical simulation.Then,the small-scale blast test was simulated,and the failure of the dolomite was compared with the test observations.Comparisons of acceleration histories,scabbing failure,and number of radial cracks and crack density confirmed the overall repeatability of the actual testing data.It is likely that the proposed model can be further used for numerical studies of blasting of dolomite rock.
文摘In recent years, China has been frequented by floods and droughts which has greatly evoked much concern from the Central Government about rural water conservancy construction. Irrigation is closely related to the "three rural" issues and concerns about the vital interests of farmers. To achieve a virtuous circle of agricultural water supply, it is necessary and urgent to establish Farmer Water User Association (FWUA) to participate in the construction, management and maintenance of small-scale irrigation system. Based on the survey on nationwide "Small-scale irrigation conditions", the roles of FWUA in the construction, management and maintenance of small-scale water conservancy have studied in this study.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11972251,11732010,11572221,11502066,and 11872272)。
文摘Active control of a fully developed turbulence boundary layer(TBL) over a flat plate has been investigated with a statistical view. The piezoelectric(PZT) oscillator is employed to produce periodic input into the inner region of the TBL.A wall probe is fixed upstream of the oscillator to identify the high-or low-speed fluctuations as the detecting signals.Then, the impact of the detecting signals on the small-scale bursting process is investigated based on the data acquired by the traversing probe downstream of the oscillator. The results indicate that the small-scale bursting intensity is restrained more apparently at high-speed detecting fluctuations but less impacted at low-speed detecting fluctuations. Furthermore, the perturbed-scale fluctuations arrange the small-scale bursting process in the near-wall region. The detecting signals have an obvious impact on this arrangement, especially the high-intensity regions of the small-scale bursting events: the vibration enhances the intensity at high-speed detecting signals but weakens it at low-speed detecting signals in these regions, which gives a direct evidence on how detecting signals interfering the small-scale bursting process.
文摘It has been shown that farmers with limited knowledge of the use and safe handling of pesticides may suffer exposure which results in adverse health effects. In Buea, Cameroon, small-scale tomato farmers commonly use pesticides for pest control. Information was obtained from these tomato farmers to determine the extent and types of their pesticide use, their knowledge of pesticide use and effectiveness, and their perception of potential harm resulting from pesticide use. A standardized questionnaire, interviews, field observations and an analytical ranking game were used to describe the pesticide use of 93 tomato farmers. Many farmers (47.6%) used pyrethiod and organophosphorus insecticides and identified these chemicals as the most effective in pesticide control;these are WHO Class II pesticides which are the most hazardous to humans. Most farmers (83.8%) used knapsack sprayers to apply pesticides, with 76.3% using no or partial personal protective equipment (PPE). It was notable that 55.5% of farmers expressed no concern regarding the wind direction (pesticide drift) during spraying. The results showed a significant association between the method of pesticides application and farm size (P < 0.001). Most farmers (85.0%) reported at least one symptom of acute pesticide poisoning following spraying. This study revealed that the tomato farmers have a high exposure to pesticides secondary to inadequate knowledge of the safe and judicious use of pesticides. Strategies that provide training on the appropriate use of pesticides, how to reduce exposure to and health risks of pesticides and alternative options of pest management and control are required. The study also raised concerns that further control of the sale and distribution of pesticides may be indicated.
基金The National Key Technology Research and Development Program of the Ministry of Science and Technology of China under contract No.2012BAC07B01the National Natural Science Foundation of China under contract Nos 41371024,41230751 and 41071006
文摘Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes,which causes the degradation of the coastal ecosystem and the biodiversity function.In this study,we explored the changes of tidal flat and salt marsh coverage in a small-scale tidal flat with an area of ~160 000 m^2 in the plain coast of Jiangsu Province,China.Human activities(e.g.,the construction of dikes) are a crucial contributor that benefits for the tidal flat accretions and the following changes of salt marsh coverage.Located in the front of the man-made "concave coastline",the study area is suitable for sediment accretion after the dike construction in the end of 2006.On the basis of the annual tidal surface elevation survey from 2007 to 2012,the sedimentation rates in the human influenced tidal flat varied from a few centimeters per year to 23 cm/a.The study area experienced a rapid accretion in the tidal flat and the expansion of the salt marsh,with the formation of a longshore bar,and a subsequent decline of the salt marsh.Breaking waves during the flooding tide brought much sediment from the adjacent tidal flat to the study area,which caused burial and degeneration of the salt marsh.The vertical grain size changes within a 66 cm long core in the study area also demonstrated the above changes in the tidal environment.This study indicates that the responses of small-scale tidal flat changes to reclamation are significant,and the rational reclamation would benefit for the new salt marsh formation in front of the dikes.Further research about the evolution of small scale tidal flat as well as the spatial planning of the polder dike should be strengthened for the purpose to maintain a healthier coastal environment.
基金This research was financially supported by the Natural Science Basic Research Program of Shaanxi,China(2022JM-126)the National Natural Science Foundation of China(52079132).
文摘The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.
文摘Fisheries management worldwide struggles to strike a balance between protecting resources,ensuring fair access to resources and promoting economic effectiveness and stability.The transition to a participatory democracy in South Africa in 1994 resulted in the transformation of government institutions and an extensive process of legislative reform regarding
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
基金supported by the National Nature Science Foundation of China,the National Key Research and Development Program of China(302001109,2016YFD0300508,2017YFD0301602,2018YFD0301105)the Fujian and Taiwan Cultivation Resources Development and Green Cultivation Coordination Innovation Center,China(Fujian 2011 Project,2015-75)the Natural Science Foundation of Fujian Province,China(2022J01142)。
文摘Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.
基金the National NaturalSciencc Foundation of China (90208022,30471067) IBM Shared University Research (LifeScience).
文摘Genes are continually being created by the processes of genome duplication (ohnolog) and gene duplication (paralog). Whole-genome duplications have been found to be widespread in plant species and play an important role in plant evolution. Clearly un-overlapping duplicated blocks of whole-genome duplications can be detected in the genome of sequenced rice (Oryza sativa). Syntenic ohnolog pairs (ohnologues) of the whole-genome duplications in rice were identified based on their syntenic duplicate lines. The paralogs of ohnologues were further scanned using multi-round reciprocal BLAST best-hit searching (E〈e^-14). The results indicated that an average of 0.55 sister paralogs could be found for every ohnologue in rice. These results suggest that small-scale duplications, as well as whole-genome duplications, play a significant role in the two duplicated rice genomes.
基金supported by grants from the National Natural Science Foundation of China(32301947,32272220 and 32172120)the China Postdoctoral Science Foundation(2023M730909)the Natural Science Foundation of Hebei Province,China(C2020204066 and C2021204140)。
文摘The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method.
基金supported by National Natural Science Foundation of China(NSFC grants 41204111,4157414641774162 and 41704155)China Postdoctoral Science Foundation(2017M622504)
文摘A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification.Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m^(-1). The theoretical results are consistent with those of the experiments.
基金This work was supported by the Research Scholarship of Chungnam National University,South Korea.
文摘In an attempt to identify solutions to the effects of erratic rainfall patterns and droughts that limit agricultural production growth,the Rwandan government has recently increased investments in irrigation development.In this study,we analyze the adoption of small-scale irrigation technologies(SSITs)and its impact on land productivity using cross-sectional data from a sample of 360 farmers in Rwanda.The study uses the propensity score matching technique to address potential self-selection bias.Our results reveal that adoption decisions are significantly influenced by factors such as education,farm size,group membership,gender,extension services,access to credit,access to weather forecast information,risk perceptions,access to a reliable source of water for irrigation,awareness of rainwater harvesting techniques,and awareness of subsidy programs.In addition,the results show that the adoption of SSITs has a significantly positive impact on land productivity.The study concludes with policy implications that highlight the need to promote the adoption of SSITs among farmers as a strategy to improve agricultural productivity and food security in Rwanda.
文摘Small-scale farmer is defined by the domestic and foreign experts and scholars.They point out that since the fragmentation of production and the diseconomy of scale in small-scale farmer is inconsistent with the characteristics of scale and technology of modern agricultural production,it is necessary to eliminate the adverse effects of existing mode in order to provide theoretical references for the relevant researches.Citrus industry in Shimen County,Hunan Province,China is introduced from the aspects of natural geographical condition and socio-economic benefit.Impact of small-scale production mode on citrus production in Shimen County is discussed.Firstly,blindness of small-scale production is the main reason leading to overproduction of citrus.Secondly,small-scale production mode has limitation on the acceptance of new technologies,restricts the operation of geographical trademark,and constraints the enthusiasm of enterprises in entering the agricultural field.Finally,suggestions are put forward,such as encouraging the circulation of rural land,improving the organization degree of farmers,changing the work function of grass-roots government and perfecting the agricultural financial credit system.
基金The authors would like to thank local farmers for their assistance with this research,particularly Ms.Amy Fiedler,owner of Springhouse Farm,and Ms.Holly Whitesides and Mr.Andy Bryant,owners of ATG Farm.The information contained in this paper is part of the research project entitled“Promoting Biomass Greenhouse Heating Systems”sponsored by the Bioenergy Research Initiative,NC Department of Agriculture and Consumer Services(Contract 17-078-4003).The authors thank all of the sponsors.
文摘Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest.