In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible...In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.展开更多
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles...Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.展开更多
This paper,on the basis of the scientific research of engineering geological exploration in a mining area,systematically studies the reasons and influence factors of consolidation and deformation of the saturated soil...This paper,on the basis of the scientific research of engineering geological exploration in a mining area,systematically studies the reasons and influence factors of consolidation and deformation of the saturated soil included in the thick loose water-bearing overburden due to mining subsidence,and analyses the dissipation of hyperstatic pore water pressure during the change of original stress and strain state of the soil. Again,by means of the coupled model based on Cambridge model and Biot's three-dimensional consolidation theory,adopting a great many physico-mechanical parameters measured in various soil layers,the paper analyses the consolidation and deformation of saturated soil affected by mining subsidence with elasto-plastic finite element method.Thus,the research not only reveals the regulation of stress,strain,displacement and hyperstatic pore water pressure dissipation in overlying soil mass,but also opens up a new direction and way for the research of mining subsidence.展开更多
The traditional Hertz contact theory has been widely used in solving contact problems.However,it is only applicable to the elastic contact,and cannot truly reflect the contact stress distribution and contact radius in...The traditional Hertz contact theory has been widely used in solving contact problems.However,it is only applicable to the elastic contact,and cannot truly reflect the contact stress distribution and contact radius in the elasto-plastic contact.In this work,based on the Hertz contact theory,a fast solving method is proposed to calculate the contact stress distribution and contact radius in the elasto-plastic contact between two spheres.It is assumed that the elastic contact only occurs at the outer edge of contact patch and its contact stress distribution satisfies the Hertz contact theory,and the contact stress distribution at the inner edge of contact patch can be superimposed by a constant contact stress and several small ellipsoidal contact stress distributions.Moreover,based on the equivalent relation between the resultant force of contact stress and the normal external load,the contact radius in the elasto-plastic contact can be solved.Finally,an elasto-plastic contact example of two spheres is given based on the power-law hardening material model,and the influences of material parameters,contact radii and normal external loads on the accuracy of the proposed method are discussed by comparing the differences between the numerical results by finite element method and the predicted ones by the proposed method.It is shown that the proposed method can accurately calculate the maximum contact stress and contact radius in the elasto-plastic contact,and the relative errors of both maximum contact stress and contact radius are within±5%.To sum up,the proposed fast solving method can be applied to perform the elasto-plastic contact analysis in engineering practice.展开更多
The main objective of this research is to study the mechanical behaviour of tropical soils using elasto-plastic constitutive equations in the so-called limit and critical states. Indeed, researchers of the Cambridge U...The main objective of this research is to study the mechanical behaviour of tropical soils using elasto-plastic constitutive equations in the so-called limit and critical states. Indeed, researchers of the Cambridge University had noticed that during their various experiments, the rate of volumetric deformation ( ) of the sample tending to zero every time the rupture of the specimen is reached during a test performed on a clay specimen Roscoe et al., 1958. To better understand and clarify this mechanical behaviour, a description has been proposed in the (e, p, q) representation that means void ratio, volumetric stress (spherical pressure) and deviatoric stress. This frame of theoretical study and apprehension is called: the theory of the Critical State. One of the major problems met at the time of our present research is the non-availability of triaxial apparatus allowing us to achieve some tests on tropical soils (samples from Senegal in West Africa) and to describe the behaviour of these materials easily like the researchers of the university of Cambridge in the theory of the critical state. To by-pass this difficulty, we decided to consider two very classical and simple mechanical tests: shear-box and the oedometer test as well as the interrelationship of the results given by the tests and some theoretical calculations. This is a way to identify an elasto-plastic model (the modified Cam Clay model) without any triaxial experiment. Indeed it supposes the model to be suitable to describe the mechanical behaviour of the considered clays.展开更多
文摘In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.
基金Project supported by the National Natural Science Foundation of China (No.10572049)
文摘Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.
文摘This paper,on the basis of the scientific research of engineering geological exploration in a mining area,systematically studies the reasons and influence factors of consolidation and deformation of the saturated soil included in the thick loose water-bearing overburden due to mining subsidence,and analyses the dissipation of hyperstatic pore water pressure during the change of original stress and strain state of the soil. Again,by means of the coupled model based on Cambridge model and Biot's three-dimensional consolidation theory,adopting a great many physico-mechanical parameters measured in various soil layers,the paper analyses the consolidation and deformation of saturated soil affected by mining subsidence with elasto-plastic finite element method.Thus,the research not only reveals the regulation of stress,strain,displacement and hyperstatic pore water pressure dissipation in overlying soil mass,but also opens up a new direction and way for the research of mining subsidence.
基金Financial supports by the Joint Fund for Basic Research of High-Speed Railways(U1734207)National Key Research and Development Plan(2017YFB0304500)+2 种基金National Natural Science Foundation of China(11572265)the Projects of Sichuan Province(Nos.2017JQ0019,2017HH0038)the Projects of Traction Power State Key Laboratory(Nos.TPL1606,2017TPL_T04)are acknowledged.
文摘The traditional Hertz contact theory has been widely used in solving contact problems.However,it is only applicable to the elastic contact,and cannot truly reflect the contact stress distribution and contact radius in the elasto-plastic contact.In this work,based on the Hertz contact theory,a fast solving method is proposed to calculate the contact stress distribution and contact radius in the elasto-plastic contact between two spheres.It is assumed that the elastic contact only occurs at the outer edge of contact patch and its contact stress distribution satisfies the Hertz contact theory,and the contact stress distribution at the inner edge of contact patch can be superimposed by a constant contact stress and several small ellipsoidal contact stress distributions.Moreover,based on the equivalent relation between the resultant force of contact stress and the normal external load,the contact radius in the elasto-plastic contact can be solved.Finally,an elasto-plastic contact example of two spheres is given based on the power-law hardening material model,and the influences of material parameters,contact radii and normal external loads on the accuracy of the proposed method are discussed by comparing the differences between the numerical results by finite element method and the predicted ones by the proposed method.It is shown that the proposed method can accurately calculate the maximum contact stress and contact radius in the elasto-plastic contact,and the relative errors of both maximum contact stress and contact radius are within±5%.To sum up,the proposed fast solving method can be applied to perform the elasto-plastic contact analysis in engineering practice.
文摘The main objective of this research is to study the mechanical behaviour of tropical soils using elasto-plastic constitutive equations in the so-called limit and critical states. Indeed, researchers of the Cambridge University had noticed that during their various experiments, the rate of volumetric deformation ( ) of the sample tending to zero every time the rupture of the specimen is reached during a test performed on a clay specimen Roscoe et al., 1958. To better understand and clarify this mechanical behaviour, a description has been proposed in the (e, p, q) representation that means void ratio, volumetric stress (spherical pressure) and deviatoric stress. This frame of theoretical study and apprehension is called: the theory of the Critical State. One of the major problems met at the time of our present research is the non-availability of triaxial apparatus allowing us to achieve some tests on tropical soils (samples from Senegal in West Africa) and to describe the behaviour of these materials easily like the researchers of the university of Cambridge in the theory of the critical state. To by-pass this difficulty, we decided to consider two very classical and simple mechanical tests: shear-box and the oedometer test as well as the interrelationship of the results given by the tests and some theoretical calculations. This is a way to identify an elasto-plastic model (the modified Cam Clay model) without any triaxial experiment. Indeed it supposes the model to be suitable to describe the mechanical behaviour of the considered clays.