We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that t...We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that the bifurcations can be delayed or completely eliminated. A periodic orbit of the system can be controlled to any desired periodic orbit by using this method.展开更多
An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simula...An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized.展开更多
The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example...The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example that has recently gained a lot of scientific attention.It has its roots in social and economic research,as well as the evaluation of network science,such as graph theory.Scientists in this area have subverted predefined theories,offering revolutionary ones regarding interconnected networks,and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon.The motivation of this study is to understand and capture the clustering properties of large networks and social networks.We present a network growth model in this paper and build a scale-free artificial social network with controllable clustering coefficients.The random walk technique is paired with a triangle generating scheme in our proposed model.As a result,the clustering controlmechanism and preferential attachment(PA)have been realized.This research builds on the present random walk model.We took numerous measurements for validation,including degree behavior and the measure of clustering decay in terms of node degree,among other things.Finally,we conclude that our suggested random walk model is more efficient and accurate than previous state-of-the-art methods,and hence it could be a viable alternative for societal evolution.展开更多
In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simula...In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario.展开更多
We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an...We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatico-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.展开更多
We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown...We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.展开更多
We present a simple rule which could generate scale-free networks with very large clustering coefficient and very small average distance. These networks, called the multistage random growing networks (MRGNs), are co...We present a simple rule which could generate scale-free networks with very large clustering coefficient and very small average distance. These networks, called the multistage random growing networks (MRGNs), are constructed by a two-stage adding process for each new node. The analytic results of the power-law exponent = 3 and the clustering coefficient C = 0.81 are obtained, which agree with the simulation results approximately. In addition, we find that the average distance of the networks increases logarithmically with the network size, which is consistent with the theoretical predictions. Since many real-world networks are both scale-free and small-world, the MRGNs may perform well in mimicking reality.展开更多
Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,w...Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography.Because of the intrinsic resolution of the technique,the micrometric cylinders composing the scaffold have a lateral step size of^200 nm,a surface roughness of around 20 nm,and large values of fractal dimension approaching 2.7.We found that cells in the scaffold assemble into separate groups with many elements per group.After cell wiring,we found that resulting networks exhibit high clustering,small path lengths,and small-world characteristics.These values of the topological characteristics of the network can potentially enhance the quality,quantity and density of information transported in the network compared to equivalent random graphs of the same size.This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.展开更多
We study the epidemic spreading of the susceptible-infected-susceptible model on small-world networks with modular structure. It is found that the epidemic threshold increases linearly with the modular strength. Furth...We study the epidemic spreading of the susceptible-infected-susceptible model on small-world networks with modular structure. It is found that the epidemic threshold increases linearly with the modular strength. Furthermore, the modular structure may influence the infected density in the steady state and the spreading velocity at the beginning of propagation. Practically, the propagation can be hindered by strengthening the modular structure in the view of network topology. In addition, to reduce the probability of reconnection between modules may also help to control the propagation.展开更多
The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical s...The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical studies, i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise, iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Ganssian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.展开更多
A node model is proposed to study the self-organized criticality in the small-world networks which represent the social networks.Based on the node model and the social balance dynamics,the social networks are mapped t...A node model is proposed to study the self-organized criticality in the small-world networks which represent the social networks.Based on the node model and the social balance dynamics,the social networks are mapped to the thermodynamic systems and the phenomena are studied with physical methods.It is found that the avalanche in the small-world networks at the critical state satisfies the power-law distribution spatially and temporally.展开更多
In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by th...In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network.展开更多
Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted ...Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.展开更多
This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with inc...This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.展开更多
By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in con...By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in contrast with the undelayed case, networks with delays can actually synchronize more easily. Specifically, for randomly distributed delays, time-delayed mutual coupling suppresses the chaotic behaviour by stabilizing a fixed point that is unstable for the uncoupled dynamical system.展开更多
The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is de...The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is designed to satisfy the sliding con- dition. The outer synchronization between two irregular coupled complex networks with different initial conditions is implemented via the designed controllers with the corre- sponding parameter update laws. The chaos synchronization of two small-world networks consisting of N uncertain identical Lorenz systems is achieved to demonstrate the appli- cations of the proposed approach.展开更多
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating...The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
基金supported by the Research Foundation for Outstanding Young Teachers of China University of Geosciences, China (Grant No CUGNL0637)the National Natural Science Foundation of China (Grant Nos 60573005, 60603006 and 60628301)
文摘We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that the bifurcations can be delayed or completely eliminated. A periodic orbit of the system can be controlled to any desired periodic orbit by using this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.60974004)the Science Foundation of Ministry of Housing and Urban-Rural Development,China(Grant No.2011-K5-31)
文摘An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized.
基金This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2021 Yeungnam University Research Grant。
文摘The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example that has recently gained a lot of scientific attention.It has its roots in social and economic research,as well as the evaluation of network science,such as graph theory.Scientists in this area have subverted predefined theories,offering revolutionary ones regarding interconnected networks,and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon.The motivation of this study is to understand and capture the clustering properties of large networks and social networks.We present a network growth model in this paper and build a scale-free artificial social network with controllable clustering coefficients.The random walk technique is paired with a triangle generating scheme in our proposed model.As a result,the clustering controlmechanism and preferential attachment(PA)have been realized.This research builds on the present random walk model.We took numerous measurements for validation,including degree behavior and the measure of clustering decay in terms of node degree,among other things.Finally,we conclude that our suggested random walk model is more efficient and accurate than previous state-of-the-art methods,and hence it could be a viable alternative for societal evolution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61101117 and 61171100)the National Key Scientific and Technological Project of China(Grant Nos.2012ZX03004005002 and 2013ZX03003012)+3 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2014AA01A701)the Special Youth Science Foundation of Jiangxi Province of China(Grant No.20133ACB21007)the Natural Science Foundation of Jiangxi Province of China(Grant Nos.20132BAB201018 and 20132BAB201018)the Fundamental Research Funds for the Central Universities,China(Grant No.BUPT2012RC0112)
文摘In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario.
基金Supported by National Natural Science Foundation of China under Grand No.10575055Sponsored by K.C.Wong Magna Fund in Ningbo University
文摘We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatico-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.
文摘We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 70431001 and 70271046.
文摘We present a simple rule which could generate scale-free networks with very large clustering coefficient and very small average distance. These networks, called the multistage random growing networks (MRGNs), are constructed by a two-stage adding process for each new node. The analytic results of the power-law exponent = 3 and the clustering coefficient C = 0.81 are obtained, which agree with the simulation results approximately. In addition, we find that the average distance of the networks increases logarithmically with the network size, which is consistent with the theoretical predictions. Since many real-world networks are both scale-free and small-world, the MRGNs may perform well in mimicking reality.
文摘Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography.Because of the intrinsic resolution of the technique,the micrometric cylinders composing the scaffold have a lateral step size of^200 nm,a surface roughness of around 20 nm,and large values of fractal dimension approaching 2.7.We found that cells in the scaffold assemble into separate groups with many elements per group.After cell wiring,we found that resulting networks exhibit high clustering,small path lengths,and small-world characteristics.These values of the topological characteristics of the network can potentially enhance the quality,quantity and density of information transported in the network compared to equivalent random graphs of the same size.This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.
基金Supported by the National Natural Science Foundation of China Grant Nos 70471088 and 70631001, the National Basic Research Programme of China under Grant No 2006CB705500.
文摘We study the epidemic spreading of the susceptible-infected-susceptible model on small-world networks with modular structure. It is found that the epidemic threshold increases linearly with the modular strength. Furthermore, the modular structure may influence the infected density in the steady state and the spreading velocity at the beginning of propagation. Practically, the propagation can be hindered by strengthening the modular structure in the view of network topology. In addition, to reduce the probability of reconnection between modules may also help to control the propagation.
基金Supported by the Natural Nature Foundation of China under Grant Nos.10747005,10972179the Nature Foundation of Lanzhou University of Technology under Grant No.Q200706
文摘The effect of small-world connection and noise on of Hodgkin-Huxley neurons are investigated in detail. Some the formation and transition of spiral wave in the networks interesting results are found in our numerical studies, i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise, iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Ganssian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.
文摘A node model is proposed to study the self-organized criticality in the small-world networks which represent the social networks.Based on the node model and the social balance dynamics,the social networks are mapped to the thermodynamic systems and the phenomena are studied with physical methods.It is found that the avalanche in the small-world networks at the critical state satisfies the power-law distribution spatially and temporally.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 60673097, 60601029, 60672126and 60702062)the National High-Tech Research and Development Plan of China (Grant Nos. 2009AA12Z210, 2008AA01Z125,2007AA12Z136 and 2007AA12Z223)+1 种基金the National Research Foundation for the Doctoral Program of Higher Education of China (Grant Nos. 20060701007 and 20070701016)Ministry&Commission-Level Research Foundation of China (Grant Nos. XADZ2008159 and 51307040103)
文摘In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61573262,and 61303061)
文摘Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847140)the Doctorial Start-up Fund of Lanzhou University of Technology (Grant No 409)
文摘This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.
基金Project supported by the National Natural Science Foundation of China (Grant No 10775060)in part by Doctoral Education Foundation of the Education Department of China and the Natural Science Foundation of Gansu Province
文摘By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in contrast with the undelayed case, networks with delays can actually synchronize more easily. Specifically, for randomly distributed delays, time-delayed mutual coupling suppresses the chaotic behaviour by stabilizing a fixed point that is unstable for the uncoupled dynamical system.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(No.11232009)the Shanghai Leading Academic Discipline Project(No.S30106)
文摘The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is designed to satisfy the sliding con- dition. The outer synchronization between two irregular coupled complex networks with different initial conditions is implemented via the designed controllers with the corre- sponding parameter update laws. The chaos synchronization of two small-world networks consisting of N uncertain identical Lorenz systems is achieved to demonstrate the appli- cations of the proposed approach.
基金Project supported by the Key Projects of Hunan Provincial Department of Education (Grant No.23A0133)the Natural Science Foundation of Hunan Province (Grant No.2022JJ30572)the National Natural Science Foundations of China (Grant No.62171401)。
文摘The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.