In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of th...In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of the SDN controller is sophisticated for the centralized control system of the entire network.Nevertheless,it creates a significant loophole for the manifestation of a distributed denial of service(DDoS)attack straightforwardly.Furthermore,recently a Distributed Reflected Denial of Service(DRDoS)attack,an unusual DDoS attack,has been detected.However,minimal deliberation has given to this forthcoming single point of SDN infrastructure failure problem.Moreover,recently the high frequencies of DDoS attacks have increased dramatically.In this paper,a smart algorithm for planning SDN smart backup controllers under DDoS attack scenarios has proposed.Our proposed smart algorithm can recommend single or multiple smart backup controllers in the event of DDoS occurrence.The obtained simulated results demonstrate that the validation of the proposed algorithm and the performance analysis achieved 99.99%accuracy in placing the smart backup controller under DDoS attacks within 0.125 to 46508.7 s in SDN.展开更多
A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical ...A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical Internet of Things(MIoT)environment.The resource representation model theory,multi-terminal aggregation algorithm,and the resource discovery algorithm based on latent factor model are also studied.A smart medical service system within the IoT environment is then developed,based on the open source project.Experimental results using real-world datasets illustrate that the proposed smart medical service system architecture can promote the intelligent and efficient management of medical resources to an extent,and assists in the develop towards digitization,intelligence,and precision in the field of medicine.展开更多
In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals w...In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals which "collide" when they arrive back at the transceiver, which leads to difficult identification. In this paper, smart antenna technique is presented to implement anti-collision in SAW RFID system. The direction of arrivals (DOAs) are used to denote the locations of tags, and genetic algorithm (GA) is suggested to find the optimal estimates of the DOAs in complex multimodal search spaces. Once the DOAs are obtained, the array weights are formed and the signals of tags are recovered to implement decoding. The experimental results show that the GA-based smart antenna technique works well in some occasions.展开更多
In the smart warehousing system adopting cargo-to-person mode, all the items are stored in the movable shelves. There are some warehouse robots transporting the shelves to the working platforms for completing order pi...In the smart warehousing system adopting cargo-to-person mode, all the items are stored in the movable shelves. There are some warehouse robots transporting the shelves to the working platforms for completing order picking or items replenishment tasks. When the number of robots is insufficient, the task allocation problem of robots is an important issue in designing the warehousing system. In this paper, the task allocation problem of insufficient warehouse robots (TAPIR) is investigated. Firstly, the TAPIR problem is decomposed into three sub-problems: task grouping problem, task scheduling problem and task balanced allocation problem. Then three sub-problems are respectively formulated into integer programming models, and the corresponding heuristic algorithms for solving three sub-problems are designed. Finally, the simulation and analysis are done on the real data of online bookstore. Simulation results show that the mathematical models and algorithms of this paper can provide a theoretical basis for solving the TAPIR problem.展开更多
These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i...These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i.e., artificial systems,computational experiments, and parallel computing) will play a much more crucial role in modeling and control of complex systems like commercial and academic buildings. The necessity of making accurate predictions of energy consumption out of a large number of operational parameters has become a crucial problem in smart buildings. Previous attempts have been made to seek energy consumption predictions based on historical data in buildings. However, there are still questions about parallel building consumption prediction mechanism using a large number of operational parameters. This article proposes a novel hybrid deep learning prediction approach that utilizes long short-term memory as an encoder and gated recurrent unit as a decoder in conjunction with ACP theory. The proposed approach is tested and validated by real-world dataset, and the results outperformed traditional predictive models compared in this paper.展开更多
The main objective of software testing is to have the highest likelihood of finding the most faults with a minimum amount of time and effort. Genetic Algorithm (GA) has been successfully used by researchers in softwar...The main objective of software testing is to have the highest likelihood of finding the most faults with a minimum amount of time and effort. Genetic Algorithm (GA) has been successfully used by researchers in software testing to automatically generate test data. In this paper, a GA is applied using branch coverage criterion to generate the least possible set of test data to test JSC applications. Results show that applying GA achieves better performance in terms of average number of test data?generations, execution time, and percentage of branch coverage.展开更多
Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and undergrou...Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.展开更多
In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy c...In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.展开更多
ZigBee无线通信技术在智能家居组网中具有重要的应用。为了探究其使用场景和方法,文章首先分析了基于ZigBee的智能家居网络组网方式,其次介绍了接收信号强度指示(Received Signal Strength Indicator,RSSI)算法的测距原理和DV-Hop算法...ZigBee无线通信技术在智能家居组网中具有重要的应用。为了探究其使用场景和方法,文章首先分析了基于ZigBee的智能家居网络组网方式,其次介绍了接收信号强度指示(Received Signal Strength Indicator,RSSI)算法的测距原理和DV-Hop算法的测点原理,最后针对两种算法的局限性,提出基于阈值的改进定位算法。展开更多
基金TM R&D Sdn Bhd fully supports this research work under Project RDTC160902.S.C.Tan and Z.Yusoff received the fund.Sponsors’Website:https://www.tmrnd.com.my.
文摘In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of the SDN controller is sophisticated for the centralized control system of the entire network.Nevertheless,it creates a significant loophole for the manifestation of a distributed denial of service(DDoS)attack straightforwardly.Furthermore,recently a Distributed Reflected Denial of Service(DRDoS)attack,an unusual DDoS attack,has been detected.However,minimal deliberation has given to this forthcoming single point of SDN infrastructure failure problem.Moreover,recently the high frequencies of DDoS attacks have increased dramatically.In this paper,a smart algorithm for planning SDN smart backup controllers under DDoS attack scenarios has proposed.Our proposed smart algorithm can recommend single or multiple smart backup controllers in the event of DDoS occurrence.The obtained simulated results demonstrate that the validation of the proposed algorithm and the performance analysis achieved 99.99%accuracy in placing the smart backup controller under DDoS attacks within 0.125 to 46508.7 s in SDN.
基金supported by the National Key R&D Program of China(2018YFC1314901)the Natural Science Foundation of China (61871446)the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NY217033)
文摘A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical Internet of Things(MIoT)environment.The resource representation model theory,multi-terminal aggregation algorithm,and the resource discovery algorithm based on latent factor model are also studied.A smart medical service system within the IoT environment is then developed,based on the open source project.Experimental results using real-world datasets illustrate that the proposed smart medical service system architecture can promote the intelligent and efficient management of medical resources to an extent,and assists in the develop towards digitization,intelligence,and precision in the field of medicine.
基金The National Natural Science Foundation ofChina(No10304012)
文摘In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals which "collide" when they arrive back at the transceiver, which leads to difficult identification. In this paper, smart antenna technique is presented to implement anti-collision in SAW RFID system. The direction of arrivals (DOAs) are used to denote the locations of tags, and genetic algorithm (GA) is suggested to find the optimal estimates of the DOAs in complex multimodal search spaces. Once the DOAs are obtained, the array weights are formed and the signals of tags are recovered to implement decoding. The experimental results show that the GA-based smart antenna technique works well in some occasions.
文摘In the smart warehousing system adopting cargo-to-person mode, all the items are stored in the movable shelves. There are some warehouse robots transporting the shelves to the working platforms for completing order picking or items replenishment tasks. When the number of robots is insufficient, the task allocation problem of robots is an important issue in designing the warehousing system. In this paper, the task allocation problem of insufficient warehouse robots (TAPIR) is investigated. Firstly, the TAPIR problem is decomposed into three sub-problems: task grouping problem, task scheduling problem and task balanced allocation problem. Then three sub-problems are respectively formulated into integer programming models, and the corresponding heuristic algorithms for solving three sub-problems are designed. Finally, the simulation and analysis are done on the real data of online bookstore. Simulation results show that the mathematical models and algorithms of this paper can provide a theoretical basis for solving the TAPIR problem.
文摘These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i.e., artificial systems,computational experiments, and parallel computing) will play a much more crucial role in modeling and control of complex systems like commercial and academic buildings. The necessity of making accurate predictions of energy consumption out of a large number of operational parameters has become a crucial problem in smart buildings. Previous attempts have been made to seek energy consumption predictions based on historical data in buildings. However, there are still questions about parallel building consumption prediction mechanism using a large number of operational parameters. This article proposes a novel hybrid deep learning prediction approach that utilizes long short-term memory as an encoder and gated recurrent unit as a decoder in conjunction with ACP theory. The proposed approach is tested and validated by real-world dataset, and the results outperformed traditional predictive models compared in this paper.
文摘The main objective of software testing is to have the highest likelihood of finding the most faults with a minimum amount of time and effort. Genetic Algorithm (GA) has been successfully used by researchers in software testing to automatically generate test data. In this paper, a GA is applied using branch coverage criterion to generate the least possible set of test data to test JSC applications. Results show that applying GA achieves better performance in terms of average number of test data?generations, execution time, and percentage of branch coverage.
文摘Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.
文摘In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.
文摘ZigBee无线通信技术在智能家居组网中具有重要的应用。为了探究其使用场景和方法,文章首先分析了基于ZigBee的智能家居网络组网方式,其次介绍了接收信号强度指示(Received Signal Strength Indicator,RSSI)算法的测距原理和DV-Hop算法的测点原理,最后针对两种算法的局限性,提出基于阈值的改进定位算法。