As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is al...As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.展开更多
Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing ...Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.展开更多
In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals w...In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals which "collide" when they arrive back at the transceiver, which leads to difficult identification. In this paper, smart antenna technique is presented to implement anti-collision in SAW RFID system. The direction of arrivals (DOAs) are used to denote the locations of tags, and genetic algorithm (GA) is suggested to find the optimal estimates of the DOAs in complex multimodal search spaces. Once the DOAs are obtained, the array weights are formed and the signals of tags are recovered to implement decoding. The experimental results show that the GA-based smart antenna technique works well in some occasions.展开更多
Meander line antenna has been considered desirable on flight vehicles to reduce drag and minimize aerodynamic disturbance;however, the antenna design and performance analysis have made mostly by trial-and-error. An in...Meander line antenna has been considered desirable on flight vehicles to reduce drag and minimize aerodynamic disturbance;however, the antenna design and performance analysis have made mostly by trial-and-error. An inductor model by simulating the meander line sections as electrical inductors and the interconnecting radiation elements as a quasi-monopole antenna is developed to analyze the antenna performance. Experimental verifications of the printed meander line antennas embedded in composite laminated substrates show that the inductor model is effective to design and analyze. Of the 4 antennas tested, the discrepancy of resonant frequency in simulation and experiment is within 4.6%.展开更多
Multiple Access Interference(MAI) is the major factor that degrades the performance of a CDMA system. In this paper, a novel transform domain algorithm combined with parameter estimation for MAI suppression is propose...Multiple Access Interference(MAI) is the major factor that degrades the performance of a CDMA system. In this paper, a novel transform domain algorithm combined with parameter estimation for MAI suppression is proposed. Compared with the method that combines an adaptive array antenna with parameter estimation for interference suppression, it converges faster with the same Bit Error Rate(BER) performance.展开更多
In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations o...In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations of capacity and load for multi-services are proposed. In order to maximize the throughput, the objective of optimization is proposed, and an advanced uplink resource management algo-rithm is developed. The proposed algorithm based on the least interference admission control scheme focuses on the maximum throughput for the circuit switched multi-services. The simulation results show that the pro-posed strategy has a significant improvement in throughput when the optimum admission control threshold is set.展开更多
Unlike directional antennas, smart antennas offer MANET (Mobile Ad hoc Net works) potential increases in their achievable throughput and capacity. Based on the development of smart antenna technology, we studied the M...Unlike directional antennas, smart antennas offer MANET (Mobile Ad hoc Net works) potential increases in their achievable throughput and capacity. Based on the development of smart antenna technology, we studied the MAC protocol for QoS support was studied, which becomes the hot issue in multimedia services. The protocol divides the channel into the data channel and the control channel, node sends forecast guarantee to compete the channel. And after completing the RTS / CTS handshake appointment, node is reserved for data transmission. Node can send Busy Tones to prevent the problem of the deafness nodes and hidden terminal. At last if the direct link between the sender and receiver has low quality and low rate, data packets may be delivered faster through a relay node. Through the analytical results, QTDMAC with the protocol IEEE802.1 and DMAC were compared. The QTDMAC protocol is proved the superiority in throughput and the real-time delay business.展开更多
A novel framework of which combines smart antennas multiple antenna systems, (SA) with multiple-input multiple-output (MIMO) at the receiver, is proposed. The uplink SA-MIMO system is investigated. The joint optim...A novel framework of which combines smart antennas multiple antenna systems, (SA) with multiple-input multiple-output (MIMO) at the receiver, is proposed. The uplink SA-MIMO system is investigated. The joint optimization problem corresponding to the uplink capacity of the single-user SA-MIMO system is deduced. Then the closedform expression of the capacity is obtained in the case of equal power allocation and the same direction-of-arrivals (DOAs) from different transmit antennas at the same antenna array, and an upper bound of the capacity is also given in the case of different DOAs at the same antenna array. After that, for the general case, a suboptimal method for the capacity optimization problem is presented. Some numerical results are also given to compare the capacities of conventional MIMO and SA-MIMO systems and show that the proposed method is viable.展开更多
文摘As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.
基金supports from the National Natural Science Foundation of China(Grant Nos.62288101,and 61971134)National Key Research and Development Program of China(Grant Nos.2021YFB3200502,and 2017YFA0700200)+2 种基金the Major Project of the Natural Science Foundation of Jiangsu Province(Grant No.BK20212002)the Fundamental Research Funds for Central Universities(Grant No.2242021R41078)the 111 Project(Grant No.111-2-05).
文摘Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.
基金The National Natural Science Foundation ofChina(No10304012)
文摘In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals which "collide" when they arrive back at the transceiver, which leads to difficult identification. In this paper, smart antenna technique is presented to implement anti-collision in SAW RFID system. The direction of arrivals (DOAs) are used to denote the locations of tags, and genetic algorithm (GA) is suggested to find the optimal estimates of the DOAs in complex multimodal search spaces. Once the DOAs are obtained, the array weights are formed and the signals of tags are recovered to implement decoding. The experimental results show that the GA-based smart antenna technique works well in some occasions.
文摘Meander line antenna has been considered desirable on flight vehicles to reduce drag and minimize aerodynamic disturbance;however, the antenna design and performance analysis have made mostly by trial-and-error. An inductor model by simulating the meander line sections as electrical inductors and the interconnecting radiation elements as a quasi-monopole antenna is developed to analyze the antenna performance. Experimental verifications of the printed meander line antennas embedded in composite laminated substrates show that the inductor model is effective to design and analyze. Of the 4 antennas tested, the discrepancy of resonant frequency in simulation and experiment is within 4.6%.
文摘Multiple Access Interference(MAI) is the major factor that degrades the performance of a CDMA system. In this paper, a novel transform domain algorithm combined with parameter estimation for MAI suppression is proposed. Compared with the method that combines an adaptive array antenna with parameter estimation for interference suppression, it converges faster with the same Bit Error Rate(BER) performance.
基金Sponsored by the National Advanced Technologies Researching and Developing Programs (No.2004AA123160).
文摘In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations of capacity and load for multi-services are proposed. In order to maximize the throughput, the objective of optimization is proposed, and an advanced uplink resource management algo-rithm is developed. The proposed algorithm based on the least interference admission control scheme focuses on the maximum throughput for the circuit switched multi-services. The simulation results show that the pro-posed strategy has a significant improvement in throughput when the optimum admission control threshold is set.
文摘Unlike directional antennas, smart antennas offer MANET (Mobile Ad hoc Net works) potential increases in their achievable throughput and capacity. Based on the development of smart antenna technology, we studied the MAC protocol for QoS support was studied, which becomes the hot issue in multimedia services. The protocol divides the channel into the data channel and the control channel, node sends forecast guarantee to compete the channel. And after completing the RTS / CTS handshake appointment, node is reserved for data transmission. Node can send Busy Tones to prevent the problem of the deafness nodes and hidden terminal. At last if the direct link between the sender and receiver has low quality and low rate, data packets may be delivered faster through a relay node. Through the analytical results, QTDMAC with the protocol IEEE802.1 and DMAC were compared. The QTDMAC protocol is proved the superiority in throughput and the real-time delay business.
基金The National Science and Technology Major Projects(No.2010ZX03003-002,2010ZX03003-004)the National Natural Science Foundation of China(No.60972023)+1 种基金Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2011A06)the Fund of UK-China Science Bridge
文摘A novel framework of which combines smart antennas multiple antenna systems, (SA) with multiple-input multiple-output (MIMO) at the receiver, is proposed. The uplink SA-MIMO system is investigated. The joint optimization problem corresponding to the uplink capacity of the single-user SA-MIMO system is deduced. Then the closedform expression of the capacity is obtained in the case of equal power allocation and the same direction-of-arrivals (DOAs) from different transmit antennas at the same antenna array, and an upper bound of the capacity is also given in the case of different DOAs at the same antenna array. After that, for the general case, a suboptimal method for the capacity optimization problem is presented. Some numerical results are also given to compare the capacities of conventional MIMO and SA-MIMO systems and show that the proposed method is viable.