Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic van...This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.展开更多
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ...The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.展开更多
Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st...Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.展开更多
This study was carried out to examine the development of an “elderly tele-nursing model” for care provided in-home by family members and through remote nursing systems in a super-aging society. This model studied th...This study was carried out to examine the development of an “elderly tele-nursing model” for care provided in-home by family members and through remote nursing systems in a super-aging society. This model studied the travel time, cost, and means of transportation of care providers. The pre-survey results regarding elderly tele-nursing show that a son/daughter can visit a parent more than once a week. In the results, the time required for elderly tele-nursing was influenced by whether or not the visitor uses the shinkansen (bullet train of Japan). In the main survey, based on 40 questionnaires, clear differences were observed according to whether visits were “every two weeks” or “once per month”. Furthermore, this result was also indicated by t-tests.展开更多
In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the ...In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.展开更多
Health is an inevitable demand to promote people's all-round development and to make foundation for economic and social development. Health and longevity of citizens is not only important symbols of national devel...Health is an inevitable demand to promote people's all-round development and to make foundation for economic and social development. Health and longevity of citizens is not only important symbols of national development and prosperity but also the common wish of the Chinese people. Actually,smart wearable technology is an emerging one and the application of some smart wearable devices such as health watch is the most promising one in the health industry. As new psychotherapy,cognitive behavioral therapy( CBT) can change the poor awareness by means of changing one's way of thinking,thus eliminating the unhealthy emotions and behaviors. In terms of health management,CBT enjoys such advantages as guidance,motivation,integrity and short therapy time. This paper introduces the improvement of smart wearable device guided by professional health management solutions on individual health by taking Philips health watch as an example,and the users can therefrom get full understanding of the relationship between smart wearable devices and health,thus improving their individual health.展开更多
According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart s...According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart substation secondary device digitization and information sharing are used by the technique. The principle of testing technique is as follow: the digital simulation model is constructed on the basis of the substation’s actual construction, then the simulating data highly similar to substation’s actual electric quantity transient process is generated, at last, the substation digital secondary device can be tested by using data “recurrence” technique. The testing technique is verified and applied by constructing testing system, the application results show that the technique can effectively perform field test on the dynamic performance of digital secondary device, and the technique has good engineering implementation and application value.展开更多
BACKGROUND Newer models of cardiac rehabilitation(CR)delivery are promising but depend upon patient participation and ability to use technological media including Internet and smart devices.AIM To explore the availabi...BACKGROUND Newer models of cardiac rehabilitation(CR)delivery are promising but depend upon patient participation and ability to use technological media including Internet and smart devices.AIM To explore the availability of smart devices,current utilization and proficiency of use among older CR program attendees.METHODS Study participants were enrolled from four CR programs in Omaha,Nebraska United States and completed a questionnaire of 28 items.RESULTS Of 376 participants approached,169 responded(45%).Mean age was 71.1(SD±10)years.Demographics were 73.5%males,89.7%Caucasians,52%with college degree and 56.9%,with income of 40 K$or more.Smart device ownership was84.5%;desktop computer was the most preferred device.Average Internet use was 1.9 h/d(SD±1.7);54.3%of participants indicating for general usage but only18.4%pursued health-related purposes.Utilization of other health information modalities was low,29.8%used mobile health applications and 12.5%used wearable devices.Of all participants,72%reported no barriers to using Internet.Education and income were associated positively with measures of utilization and with less perceived barriers.CONCLUSIONAmong an older group of subjects attending CR,most have access to smart devices and do not perceive significant barriers to Internet use.Nonetheless,there was low utilization of health-related resources suggesting a need for targeted education in this patient population.展开更多
The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilizati...The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.展开更多
From an empirical point of view,this paper proposes research hypotheses and models based on the market situation of Xiaomi smart wearable devices in Guangxi,as well as the research status of consumers’purchasing deci...From an empirical point of view,this paper proposes research hypotheses and models based on the market situation of Xiaomi smart wearable devices in Guangxi,as well as the research status of consumers’purchasing decisions,combined with the empirical research of some researchers.This paper designs questionnaires and scales.The sampling survey method is used to investigate and analyze the influencing factors of Guangxi consumers’decision to purchase Xiaomi smart wearable devices.Questionnaires were distributed through Questionnaire Star,and 385 valid questionnaires were collected for descriptive statistics and correlation analysis.Conclusions are as follow:(1)Consumers in Guangxi who purchase Xiaomi smart wearable devices are between 19 and 32 years old,and most of them have a bachelor’s degree.Among the five factors of demographic characteristics,only income and marketing mix satisfaction have a positive correlation,indicating that customers are sensitive to Xiaomi smart wearable products.And among the customers of Xiaomi smart wearable products,the monthly income of less than 5,000 yuan accounted for 30.91%of the total number of surveys;the monthly income was 5,000-7,000 yuan,accounting for 34.29%.(2)The satisfaction of the marketing mix is positively correlated with the satisfaction of customer decision-making.The satisfaction of the marketing mix varies with the age,gender,education,income,and working years of each population,and only the income is positively correlated with the satisfaction of the marketing mix.Relationships,age,gender,education,and years of employment were not associated with marketing mix satisfaction.According to the above conclusions,relevant and reasonable product development and marketing suggestions are put forward for the enterprise,which provides a reference for the enterprise’s brand building and market development.Therefore,on the basis of comparing with other scholars at home and abroad,through the 7P marketing theory and purchasing decision theory and the research on the current situation of influencing factors for customers to purchase Xiaomi smart wearable devices in Guangxi,this paper compiled a questionnaire for 385 private colleges and universities in Guangxi.A questionnaire survey was carried out with customers,and the current situation of customers’purchasing decision-making behavior was obtained and analyzed and the following suggestions were put forward:continuously innovating products,targeting target customers,reasonably setting product prices,improving marketing mix.展开更多
A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si...A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si based sol gel sticking and smart cut techniques. The reflectivity of the SOR substrate is close to unity at 1 3μm's wavelength under the normal incidence.展开更多
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia...Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.展开更多
The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the app...The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.展开更多
Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device a...Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.展开更多
Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice a...Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution P...In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution Process (SSFEP) under different fault data conditions, an intelligent method for determining the Smart System Fault Probability (SSFP) is proposed. The data types provided by edge devices include the following: (1) only known edge device fault probability;(2) known Edge Device Fault Probability Distribution (EDFPD);(3) known edge device fault number and EDFPD;(4) known factor state of the edge device fault and EDFPD. Moreover, decision methods are proposed for each data case. Transfer Probability (TP) is divided into Continuity Transfer Probability (CTP) and Filterability Transfer Probability (FTP). CTP asserts that a Cause Event (CE) must lead to a Result Event (RE), while FTP requires CF probability to exceed a threshold before RF occurs. These probabilities are used to calculate SSFP. This paper introduces a decision method using the information diffusion principle for low-data SSFP determination, along with an improved method. The method is based on space fault network theory, abstracting SSFEP into a System Fault Evolution Process (SFEP) for research purposes.展开更多
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金Project supported by the National Natural Science Foundation of China (Grant No 60676033).
文摘This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.
基金supported by project TRANSACT funded under H2020-EU.2.1.1.-INDUSTRIAL LEADERSHIP-Leadership in Enabling and Industrial Technologies-Information and Communication Technologies(Grant Agreement ID:101007260).
文摘The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.
基金supported by the National Key R&D Program of China(No.2022YFA1203400)the National Natural Science Foundation of China under Grant(Nos.62174093 and 12075307)+7 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project under Grant(No.2023QL006)the Open Research Fund of China National Key Laboratory of Materials for Integrated Circuits(No.NKLJC-K2023-01)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110628)the support by LDRD Seedling ER project at Los Alamos National Laboratory,NM,USA(No.20210867ER)partially supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)supported by Center for Computational Science and Engineering at Southern University of Science and TechnologyShanghai Rising-Star Program(No.21QA1410900)the support from the Youth Innovation Promotion Association CAS
文摘Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.
文摘This study was carried out to examine the development of an “elderly tele-nursing model” for care provided in-home by family members and through remote nursing systems in a super-aging society. This model studied the travel time, cost, and means of transportation of care providers. The pre-survey results regarding elderly tele-nursing show that a son/daughter can visit a parent more than once a week. In the results, the time required for elderly tele-nursing was influenced by whether or not the visitor uses the shinkansen (bullet train of Japan). In the main survey, based on 40 questionnaires, clear differences were observed according to whether visits were “every two weeks” or “once per month”. Furthermore, this result was also indicated by t-tests.
文摘In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.
文摘Health is an inevitable demand to promote people's all-round development and to make foundation for economic and social development. Health and longevity of citizens is not only important symbols of national development and prosperity but also the common wish of the Chinese people. Actually,smart wearable technology is an emerging one and the application of some smart wearable devices such as health watch is the most promising one in the health industry. As new psychotherapy,cognitive behavioral therapy( CBT) can change the poor awareness by means of changing one's way of thinking,thus eliminating the unhealthy emotions and behaviors. In terms of health management,CBT enjoys such advantages as guidance,motivation,integrity and short therapy time. This paper introduces the improvement of smart wearable device guided by professional health management solutions on individual health by taking Philips health watch as an example,and the users can therefrom get full understanding of the relationship between smart wearable devices and health,thus improving their individual health.
文摘According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart substation secondary device digitization and information sharing are used by the technique. The principle of testing technique is as follow: the digital simulation model is constructed on the basis of the substation’s actual construction, then the simulating data highly similar to substation’s actual electric quantity transient process is generated, at last, the substation digital secondary device can be tested by using data “recurrence” technique. The testing technique is verified and applied by constructing testing system, the application results show that the technique can effectively perform field test on the dynamic performance of digital secondary device, and the technique has good engineering implementation and application value.
文摘BACKGROUND Newer models of cardiac rehabilitation(CR)delivery are promising but depend upon patient participation and ability to use technological media including Internet and smart devices.AIM To explore the availability of smart devices,current utilization and proficiency of use among older CR program attendees.METHODS Study participants were enrolled from four CR programs in Omaha,Nebraska United States and completed a questionnaire of 28 items.RESULTS Of 376 participants approached,169 responded(45%).Mean age was 71.1(SD±10)years.Demographics were 73.5%males,89.7%Caucasians,52%with college degree and 56.9%,with income of 40 K$or more.Smart device ownership was84.5%;desktop computer was the most preferred device.Average Internet use was 1.9 h/d(SD±1.7);54.3%of participants indicating for general usage but only18.4%pursued health-related purposes.Utilization of other health information modalities was low,29.8%used mobile health applications and 12.5%used wearable devices.Of all participants,72%reported no barriers to using Internet.Education and income were associated positively with measures of utilization and with less perceived barriers.CONCLUSIONAmong an older group of subjects attending CR,most have access to smart devices and do not perceive significant barriers to Internet use.Nonetheless,there was low utilization of health-related resources suggesting a need for targeted education in this patient population.
文摘The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.
文摘From an empirical point of view,this paper proposes research hypotheses and models based on the market situation of Xiaomi smart wearable devices in Guangxi,as well as the research status of consumers’purchasing decisions,combined with the empirical research of some researchers.This paper designs questionnaires and scales.The sampling survey method is used to investigate and analyze the influencing factors of Guangxi consumers’decision to purchase Xiaomi smart wearable devices.Questionnaires were distributed through Questionnaire Star,and 385 valid questionnaires were collected for descriptive statistics and correlation analysis.Conclusions are as follow:(1)Consumers in Guangxi who purchase Xiaomi smart wearable devices are between 19 and 32 years old,and most of them have a bachelor’s degree.Among the five factors of demographic characteristics,only income and marketing mix satisfaction have a positive correlation,indicating that customers are sensitive to Xiaomi smart wearable products.And among the customers of Xiaomi smart wearable products,the monthly income of less than 5,000 yuan accounted for 30.91%of the total number of surveys;the monthly income was 5,000-7,000 yuan,accounting for 34.29%.(2)The satisfaction of the marketing mix is positively correlated with the satisfaction of customer decision-making.The satisfaction of the marketing mix varies with the age,gender,education,income,and working years of each population,and only the income is positively correlated with the satisfaction of the marketing mix.Relationships,age,gender,education,and years of employment were not associated with marketing mix satisfaction.According to the above conclusions,relevant and reasonable product development and marketing suggestions are put forward for the enterprise,which provides a reference for the enterprise’s brand building and market development.Therefore,on the basis of comparing with other scholars at home and abroad,through the 7P marketing theory and purchasing decision theory and the research on the current situation of influencing factors for customers to purchase Xiaomi smart wearable devices in Guangxi,this paper compiled a questionnaire for 385 private colleges and universities in Guangxi.A questionnaire survey was carried out with customers,and the current situation of customers’purchasing decision-making behavior was obtained and analyzed and the following suggestions were put forward:continuously innovating products,targeting target customers,reasonably setting product prices,improving marketing mix.
文摘A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si based sol gel sticking and smart cut techniques. The reflectivity of the SOR substrate is close to unity at 1 3μm's wavelength under the normal incidence.
基金Research funding from the Shanghai Municipal Education Commission in the framework of the oriental scholar and distinguished professor designationfunding from the National Natural Science Foundation of China(NSFC)
文摘Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.
基金funded by FCT (Fun- dacāo Ciência e Tecnologia) under grant PD/BD/128051/2016the Shift2Rail In2Stempo project (grant 777515)+3 种基金partially supported by FCT R&D Unit SYSTEC—POCI-01-0145-FEDER-006933SYSTEC funded by FEDER funds through COMPETE2020by national funds through the FCT/MECco-funded by FEDER, in the scope of the PT2020 Partnership Agreement。
文摘The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.
文摘Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.
基金This material is based upon work funded by the National Science Foundation EPSCoR Cooperative Agreement OIA-1757207。
文摘Distribution feeder microgrid(DFM)built based on existing distributed feeder(DF),is a promising solution for modern microgrid.DFM contains a large number of heterogeneous devices that generate heavy network traffice and require a low data delivery latency.The information-centric networking(ICN)paradigm has shown a great potential to address the communication requirements of smart grid.However,the integration of advanced information and communication technologies with DFM make it vulnerable to cyber attacks.Adequate authentication of grid devices is essential for preventing unauthorized accesses to the grid network and defending against cyber attacks.In this paper,we propose a new lightweight anonymous device authentication scheme for DFM supported by named data networking(NDN),a representative implementation of ICN.We perform a security analysis to show that the proposed scheme can provide security features such as mutual authentication,session key agreement,defending against various cyber attacks,anonymity,and resilience against device capture attack.The security of the proposed scheme is also formally verified using the popular AVISPA(Automated Validation of Internet Security Protocols and Applications)tool.The computational and communication costs of the proposed scheme are evaluated.Our results demonstrate that the proposed scheme achieves significantly lower computational,communication and energy costs than other state-of-the-art schemes.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by the National Natural Science Foundation of China(No.52004120).
文摘In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution Process (SSFEP) under different fault data conditions, an intelligent method for determining the Smart System Fault Probability (SSFP) is proposed. The data types provided by edge devices include the following: (1) only known edge device fault probability;(2) known Edge Device Fault Probability Distribution (EDFPD);(3) known edge device fault number and EDFPD;(4) known factor state of the edge device fault and EDFPD. Moreover, decision methods are proposed for each data case. Transfer Probability (TP) is divided into Continuity Transfer Probability (CTP) and Filterability Transfer Probability (FTP). CTP asserts that a Cause Event (CE) must lead to a Result Event (RE), while FTP requires CF probability to exceed a threshold before RF occurs. These probabilities are used to calculate SSFP. This paper introduces a decision method using the information diffusion principle for low-data SSFP determination, along with an improved method. The method is based on space fault network theory, abstracting SSFEP into a System Fault Evolution Process (SFEP) for research purposes.