Smart beams play a vital role in modern intelligent vehicles and have recently attracted significant attention.A spatial light modulator with high optical efficiency,low cost,and compact size is crucial for designing ...Smart beams play a vital role in modern intelligent vehicles and have recently attracted significant attention.A spatial light modulator with high optical efficiency,low cost,and compact size is crucial for designing smart beams.Here,we mix cholesteric liquid crystals with dichroic black dye and a monomer.After UV polymerization,the sample exhibits a low driving voltage of 26 V,a high transmittance of over 70%,and an On-off ratio over 280,thanks to the joint contribution of both the absorption and the scattering effect.A smart beam device is demonstrated by electrically addressing the dye-doped and polymer-stabilized cholesteric liquid crystal with pixelated electrodes.Light patterns with arbitrary designs are projected dynamically.The switching time reaches several tens of milliseconds.This strategy brings new designs to intelligent vehicles and may also inspire applications in public information displays,advertising,and even AR/VR displays.展开更多
A finite element model for piezoelectric smart beam in extension mode based on First-order Shear Deformation Theory(FSDT)with an appropriate through-thickness distribution of electric potential is presented.Accuracy o...A finite element model for piezoelectric smart beam in extension mode based on First-order Shear Deformation Theory(FSDT)with an appropriate through-thickness distribution of electric potential is presented.Accuracy of piezoelectric finite element formulations depends on the selection of assumed mechanical and electrical fields.Most of the conventional FSDT-based piezoelectric beam formulations available in the literature use linear through-thickness distribution of electric potential which is actually nonlinear.Here,a novel quadratic profile of the through-thickness electric potential is proposed to include the nonlinear effects.The results obtained show that the accuracy of conventional formulations with linear through-thickness potential approximation is affected by the material configuration,especially when the piezoelectric material dominates the beam cross section.It is shown that the present formulation gives the same level of accuracy for all regimes of material configurations in the beam cross section.Also,a modified form of the FSDT displacements is employed,which utilizes the shear angle as a degree of freedom instead of section rotation.Such a FSDT displacement field shows improved performance compared to the conventional field.The present formulation is validated by comparing the results with ANSYS 2D simulation.The comparison of results proves the improved efficiency and accuracy of the present formulation over the conventional formulations.展开更多
A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account boun...A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account bounded disturbances, a robust distributed controller was constructed based on the system model, which was described by a set of partial differential equations (PDEs) and boundary conditions (BCs) . Subsequently, a finite dimensional controller was further developed, and it was proven that this controller can stabilize the finite dimensional model with arbitrary number of flexible modes. Keywords Dynamic modelling - Robust distributed controller - Flexible beam - Smart material展开更多
Based on Hamilton's principle, a new kind of fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is proposed. The geometrically nonlinear effects of the axial, transver...Based on Hamilton's principle, a new kind of fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is proposed. The geometrically nonlinear effects of the axial, transverse displacement and rotation angle are considered by means of the first-order approximation coupling (FOAC) model theory, in which large deformations and the centrifugal stiffening effects are considered. Three kinds of systems are established respectively, which are a structure without piezoelectric layer, with piezoelectric layer in open circuit and closed circuit. Several simulations based on simplified models are presented to show the differences in characteristics between structures with and without the tip mass, between smart beams in closed and open circuit, and between the centrifugal effects in high speed rotating state or not. The last simulation calculates the dynamic response of the structure subjected to external electrical loading.展开更多
Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, envi...Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, environmental management, healthcare, and smart grid. Ad hoc networks have some limitations namely short operating life, unreliability, scalability, delay, high interference, and scarce resources. In order to overcome these limitations, numerous researches have been carried out. Smart antenna integration is one of them. It has been shown in the literatures that smart antenna can improve network’s capacity, increase network lifetime, reduce delay, and improve scalability by directing antenna radiation pattern in a desired direction. But, producing a desired antenna radiation pattern is not a simple task for resource constraint ad hoc networks. A careful selection of beam forming algorithm is required. In this paper we show that smart antenna system, consisting of circular microstrip antennas and arranged in a linear arrangement, is the most suitable choice for ad hoc network. We compare a number of smart antenna algorithms in this paper under different noisy conditions. We show that the Least Square Constant Modulus (LSCM) and Least Constant Modulus (LCM) algorithms outperform other algorithms in terms of directivity and minimized side lobes.展开更多
Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Se...Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.展开更多
Today, the significance of the wireless communication is known all over the world. In order to achieve the better communication, many techniques and methods have been introduced. Among these techniques, smart/adaptive...Today, the significance of the wireless communication is known all over the world. In order to achieve the better communication, many techniques and methods have been introduced. Among these techniques, smart/adaptive antennas are trending topic in the research domain. The smart antennas consist of various antennas arrays and have the ability to optimize the radia-tion and reception of the desired signals dynamically. Also, in order to avoid or mitigate the interferences, smart antennas can introduce nulls in the in-terferers direction by adaptive updating of the weights linked at every antenna element. The smart antennas can also enhance the quality of reception and reduce the dropped calls. This paper discusses the various survey topics related to smart antennas, Adaptive Beam Forming (ABF) algorithm etc. Also the various existing researches are discussed to know the research gap for future research scope.展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2022YFA1203703)the National Natural Science Foundation of China(NSFC)(No.62035008)the Fundamental Research Funds for the Central Universities(No.021314380233).
文摘Smart beams play a vital role in modern intelligent vehicles and have recently attracted significant attention.A spatial light modulator with high optical efficiency,low cost,and compact size is crucial for designing smart beams.Here,we mix cholesteric liquid crystals with dichroic black dye and a monomer.After UV polymerization,the sample exhibits a low driving voltage of 26 V,a high transmittance of over 70%,and an On-off ratio over 280,thanks to the joint contribution of both the absorption and the scattering effect.A smart beam device is demonstrated by electrically addressing the dye-doped and polymer-stabilized cholesteric liquid crystal with pixelated electrodes.Light patterns with arbitrary designs are projected dynamically.The switching time reaches several tens of milliseconds.This strategy brings new designs to intelligent vehicles and may also inspire applications in public information displays,advertising,and even AR/VR displays.
文摘A finite element model for piezoelectric smart beam in extension mode based on First-order Shear Deformation Theory(FSDT)with an appropriate through-thickness distribution of electric potential is presented.Accuracy of piezoelectric finite element formulations depends on the selection of assumed mechanical and electrical fields.Most of the conventional FSDT-based piezoelectric beam formulations available in the literature use linear through-thickness distribution of electric potential which is actually nonlinear.Here,a novel quadratic profile of the through-thickness electric potential is proposed to include the nonlinear effects.The results obtained show that the accuracy of conventional formulations with linear through-thickness potential approximation is affected by the material configuration,especially when the piezoelectric material dominates the beam cross section.It is shown that the present formulation gives the same level of accuracy for all regimes of material configurations in the beam cross section.Also,a modified form of the FSDT displacements is employed,which utilizes the shear angle as a degree of freedom instead of section rotation.Such a FSDT displacement field shows improved performance compared to the conventional field.The present formulation is validated by comparing the results with ANSYS 2D simulation.The comparison of results proves the improved efficiency and accuracy of the present formulation over the conventional formulations.
文摘A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account bounded disturbances, a robust distributed controller was constructed based on the system model, which was described by a set of partial differential equations (PDEs) and boundary conditions (BCs) . Subsequently, a finite dimensional controller was further developed, and it was proven that this controller can stabilize the finite dimensional model with arbitrary number of flexible modes. Keywords Dynamic modelling - Robust distributed controller - Flexible beam - Smart material
基金Project supported by the National Natural Science Foundation of China(Nos.10572119,10632030 and 50625516)the Program for New Century Excellent Talents in University(No.NCET-04-0958)+1 种基金the Major State Basic Research Development Program of China(973 Program)(No.2003CB716207)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment of China
文摘Based on Hamilton's principle, a new kind of fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is proposed. The geometrically nonlinear effects of the axial, transverse displacement and rotation angle are considered by means of the first-order approximation coupling (FOAC) model theory, in which large deformations and the centrifugal stiffening effects are considered. Three kinds of systems are established respectively, which are a structure without piezoelectric layer, with piezoelectric layer in open circuit and closed circuit. Several simulations based on simplified models are presented to show the differences in characteristics between structures with and without the tip mass, between smart beams in closed and open circuit, and between the centrifugal effects in high speed rotating state or not. The last simulation calculates the dynamic response of the structure subjected to external electrical loading.
文摘Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, environmental management, healthcare, and smart grid. Ad hoc networks have some limitations namely short operating life, unreliability, scalability, delay, high interference, and scarce resources. In order to overcome these limitations, numerous researches have been carried out. Smart antenna integration is one of them. It has been shown in the literatures that smart antenna can improve network’s capacity, increase network lifetime, reduce delay, and improve scalability by directing antenna radiation pattern in a desired direction. But, producing a desired antenna radiation pattern is not a simple task for resource constraint ad hoc networks. A careful selection of beam forming algorithm is required. In this paper we show that smart antenna system, consisting of circular microstrip antennas and arranged in a linear arrangement, is the most suitable choice for ad hoc network. We compare a number of smart antenna algorithms in this paper under different noisy conditions. We show that the Least Square Constant Modulus (LSCM) and Least Constant Modulus (LCM) algorithms outperform other algorithms in terms of directivity and minimized side lobes.
文摘Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.
文摘Today, the significance of the wireless communication is known all over the world. In order to achieve the better communication, many techniques and methods have been introduced. Among these techniques, smart/adaptive antennas are trending topic in the research domain. The smart antennas consist of various antennas arrays and have the ability to optimize the radia-tion and reception of the desired signals dynamically. Also, in order to avoid or mitigate the interferences, smart antennas can introduce nulls in the in-terferers direction by adaptive updating of the weights linked at every antenna element. The smart antennas can also enhance the quality of reception and reduce the dropped calls. This paper discusses the various survey topics related to smart antennas, Adaptive Beam Forming (ABF) algorithm etc. Also the various existing researches are discussed to know the research gap for future research scope.