To implement the access and backhaul networks for Smart Metering (SM) systems various technologies are combined with the existing communications infrastructure. This paper deals with data transmission in SM systems, f...To implement the access and backhaul networks for Smart Metering (SM) systems various technologies are combined with the existing communications infrastructure. This paper deals with data transmission in SM systems, focusing on how the existing cellular networks infrastructure is employed to implement SM access communication networks. The analysis aims at analyzing the role of the cellular communications infrastructure taking into account the spatial distribution and installation points of the smart meters, the urban and topological characteristics of the SM deployment areas and the common practice so far followed by the utilities. It is demonstrated that cellular communications, either exclusively or combined with power line communications, enable immediate and scalable deployment of SM access communication networks at low installation cost, thus constituting the basic option for the implementation of smart metering.展开更多
Interference cancellation is made available by using smart antenna at cellular base stations. Well distributed cumulative probability of signal to interference plus noise power ratio appears to be vital for cellular m...Interference cancellation is made available by using smart antenna at cellular base stations. Well distributed cumulative probability of signal to interference plus noise power ratio appears to be vital for cellular mobile multimedia communications. A scenario of dual links dynamic power control combined to a solution of smart antenna is proposed to adjust the instant transmission power in terms of the disparity from the favorite range. Simulation results show that this method is quite effective to improve the cumulative distribution probability performance. Meanwhile, accompanying low power consumption is also obtained at both base stations and mobile stations.展开更多
At present, the structure of power systems is greatly changing due to the penetration of decentralized generations. Although they encompass a high flexibility potential, their large-scale penetration interferes with t...At present, the structure of power systems is greatly changing due to the penetration of decentralized generations. Although they encompass a high flexibility potential, their large-scale penetration interferes with the power system operation at all voltage levels. To get rid of this flaw and exploit their flexibility, different concepts like Virtual Power Plants, Microgrids and Cellular Approach have been introduced but still no solution is in sight. Under these conditions, it seems quite intriguing to find out whether these concepts are likely to offer a complete solution or not. This paper presents ten criteria to assess the complete Smart Grid solution and introduces a comprehensive evaluation system based on cloud-charts. The paper looks into the already existing solutions, which are respectively based on Virtual Power Plants, Microgrids and Cellular Approach concepts. The investigations have shown that none of these solutions meets all criteria necessary for a complete Smart Grid solution. Even a combination of different criteria fails to yield the desired results.展开更多
文摘To implement the access and backhaul networks for Smart Metering (SM) systems various technologies are combined with the existing communications infrastructure. This paper deals with data transmission in SM systems, focusing on how the existing cellular networks infrastructure is employed to implement SM access communication networks. The analysis aims at analyzing the role of the cellular communications infrastructure taking into account the spatial distribution and installation points of the smart meters, the urban and topological characteristics of the SM deployment areas and the common practice so far followed by the utilities. It is demonstrated that cellular communications, either exclusively or combined with power line communications, enable immediate and scalable deployment of SM access communication networks at low installation cost, thus constituting the basic option for the implementation of smart metering.
文摘Interference cancellation is made available by using smart antenna at cellular base stations. Well distributed cumulative probability of signal to interference plus noise power ratio appears to be vital for cellular mobile multimedia communications. A scenario of dual links dynamic power control combined to a solution of smart antenna is proposed to adjust the instant transmission power in terms of the disparity from the favorite range. Simulation results show that this method is quite effective to improve the cumulative distribution probability performance. Meanwhile, accompanying low power consumption is also obtained at both base stations and mobile stations.
文摘At present, the structure of power systems is greatly changing due to the penetration of decentralized generations. Although they encompass a high flexibility potential, their large-scale penetration interferes with the power system operation at all voltage levels. To get rid of this flaw and exploit their flexibility, different concepts like Virtual Power Plants, Microgrids and Cellular Approach have been introduced but still no solution is in sight. Under these conditions, it seems quite intriguing to find out whether these concepts are likely to offer a complete solution or not. This paper presents ten criteria to assess the complete Smart Grid solution and introduces a comprehensive evaluation system based on cloud-charts. The paper looks into the already existing solutions, which are respectively based on Virtual Power Plants, Microgrids and Cellular Approach concepts. The investigations have shown that none of these solutions meets all criteria necessary for a complete Smart Grid solution. Even a combination of different criteria fails to yield the desired results.